Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cereb Blood Flow Metab ; 41(4): 857-873, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33736511

RESUMO

Post-stroke neurological deficits and mortality are often associated with vascular disruption and neuronal apoptosis. Galectin-3 (Gal3) is a potent pro-survival and angiogenic factor. However, little is known about its protective role in the cerebral ischemia/reperfusion (I/R) injury. We have previously shown significant up-regulation of Gal3 in the post-stroke rat brain, and that blocking of Gal3 with neutralizing antibody decreases the cerebral blood vessel density. Our current study demonstrates that intracerebral local delivery of the Gal3 into rat brain at the time of reperfusion exerts neuroprotection. Ischemic lesion volume and neuronal cell death were significantly reduced as compared with the vehicle-treated MCAO rat brains. Gal3 increased vessel density and neuronal survival after I/R in rat brains. Importantly, Gal3-treated groups showed significant improvement in motor and sensory functional recovery. Gal3 increased neuronal cell viability under in vitro oxygen-glucose deprivation conditions in association with increased phosphorylated-Akt, decreased phosphorylated-ERK1/2, and reduced caspase-3 activity. Gene expression analysis showed down regulation of pro-apoptotic and inflammatory genes including Fas-ligand, and upregulation of pro-survival and pro-angiogenic genes including Bcl-2, PECAM, and occludin. These results indicate a key role for Gal3 in neuro-vascular protection and functional recovery following ischemic stroke through modulation of angiogenic and apoptotic pathways.


Assuntos
Indutores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Caspases/efeitos dos fármacos , Galectina 3/uso terapêutico , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo , Morte Celular/efeitos dos fármacos , Galectina 3/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Hipóxia Encefálica/tratamento farmacológico , Microinjeções , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Endogâmicos SHR , Traumatismo por Reperfusão/prevenção & controle
3.
ACS Chem Neurosci ; 10(1): 132-142, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30134661

RESUMO

Anti-NMDA ( N-methyl-d-aspartate) receptor (anti-NMDAR) encephalitis is one of the most common paraneoplastic encephalitides. It occurs in both sexes, across all age ranges, and may occur in the presence or absence of an associated tumor. Its pathogenesis and clinical presentation relate to the presence of IgG1 or IgG3 antibodies targeting the NR1 subunit of the NMDA receptor, leading to a disinhibition of neuronal excitatory pathways. Initial clinical manifestations may be nonspecific, resembling a viral-like illness; however, with disease progression, symptoms can become quite severe, including prominent psychiatric features, cognitive problems, motor dysfunction, and autonomic instability. Anti-NMDAR encephalitis may even result in death in severe untreated cases. Diagnosis can be challenging, given that initial laboratory and radiographic results are typically nonspecific. The majority of patients respond to first or second-line treatments, although therapeutic options remain limited, usually consisting of tumor removal (if there is confirmation of an underlying malignancy) in conjunction with prompt initiation of immunosuppressive medications along with intravenous immunoglobulins and/or plasma exchange. Although the clinical presentation of anti-NMDAR encephalitis overlaps with several other more common neurological and psychiatric disorders, early diagnosis and treatment is essential for a positive prognosis. Here, we concisely review the pathogenesis, diagnosis, and clinical management of this disease.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Encefalite Antirreceptor de N-Metil-D-Aspartato/terapia , Gerenciamento Clínico , Imunossupressores/uso terapêutico , Encefalite Antirreceptor de N-Metil-D-Aspartato/metabolismo , Autoanticorpos/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo
4.
J Neurosci ; 34(38): 12678-89, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232106

RESUMO

Synapses are surrounded by a layer of extracellular matrix (ECM), which is instrumental for their development and maintenance. ECM composition is dynamically controlled by proteases, but how the precise composition of the ECM affects synaptic morphology is largely unknown. Through an unbiased forward genetic screen, we found that Caenorhabditis elegans gon-1, a conserved extracellular ADAMTS protease, is required for maintaining proper synaptic morphology at the neuromuscular junction. In gon-1 mutants, once synapse formation is complete, motor neuron presynaptic varicosities develop into large bulbous protrusions that contain synaptic vesicles and active zone proteins. A concomitant overgrowth of postsynaptic muscle membrane is found in close apposition to presynaptic axonal protrusions. Mutations in the muscle-specific, actin-severing protein cofilin (unc-60) suppress the axon phenotype, suggesting that muscle outgrowth is necessary for presynaptic protrusions. gon-1 mutants can also be suppressed by loss of the ECM components collagen IV (EMB-9) and fibulin (FBL-1). We propose that GON-1 regulates a developmental switch out of an initial "pro-growth" phase during which muscle arms grow out and form synapses with motor neuron axons. We postulate that this switch involves degradation or reorganization of collagen IV (EMB-9), whereas FBL-1 opposes GON-1 by stabilizing EMB-9. Our results describe a mechanism for regulating synaptic ECM composition and reveal the importance of precise ECM composition for neuronal morphology and synapse integrity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Metaloendopeptidases/genética , Junção Neuromuscular/crescimento & desenvolvimento , Sinapses/metabolismo , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/genética , Colágeno Tipo IV/genética , Metaloendopeptidases/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Junção Neuromuscular/citologia , Junção Neuromuscular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...