Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 106: 106896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718713

RESUMO

Ultrasound enhanced evaporating crystallization has been proposed to solve the problems of low crystallization yield and uneven particle size in the evaporating crystallization process of ammonium sulfate solution at atmospheric pressure. The effects of key operating parameters, including the ultrasound power, stirring speed, pH value, and ultrasound time, on the yield of ammonium sulfate product and the duration of solid-liquid transformation time are studied. The results show that the ultrasound crystallization can increase the ammonium sulfate yield by 52.9 %, reduce the solid-liquid transformation time of ammonium sulfate by 10 %, and obtain ammonium sulfate products with higher crystallinity and more uniform particle size. Ultrasound promotes the crystallization of ammonium sulfate by enhancing the transfer of heat in the solution and reducing the supersolubility of the ammonium sulfate solution from 937.5 g/L to 833.33 g/L. This study provides experimental justification for the use of ultrasound in atmospheric evaporative crystallization.

2.
Ultrason Sonochem ; 102: 106764, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219549

RESUMO

Replacing cadmium ions in cadmium-containing solutions with aluminum powder is beneficial for cadmium resource recycling and environmental protection. However, the conventional aluminum powder replacement method requires harsh temperatures and prolonged conditions. In this study, the effect and mechanism of ultrasound on the replacement of cadmium with aluminum powder were investigated at low temperatures. Ultrasound has been proven to promote the etching of alumina films through the use of TEM and XPS, providing mechanistic support for the superiority of the new process. A degree of Cd replacement as high as 95.08 % is achieved at a low temperature (60 ℃) and in a short time (20 min) when using ultrasonicated aluminum powder replacement, which is 42.17 % higher than that of conventional aluminum powder. Compared with conventional aluminum powder replacement conditions with the same effect, the introduction of ultrasound can reduce the temperature by 30℃ and shorten the replacement time by 2/3, which has significant advantages in reaction efficiency and safety. The strengthening mechanism of ultrasound on the replacement effect of aluminum powder at low temperatures is revealed through detailed discussions on the corrosion of alumina films, agglomeration of aluminum powder, and adhesion of replacement products to the surface of aluminum powder, dissolved oxygen in the solution, and redissolution of cadmium. Therefore, a new approach for replacing aluminum powder in solutions with high Cd2+ concentrations at low temperatures is proposed in this work, which is expected to solve the existing harsh and dangerous problems of industrial aluminum powder replacement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA