Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 2358-2374, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38873647

RESUMO

Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.

2.
Molecules ; 28(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049762

RESUMO

Quinazolinedione is one of the most outstanding heterocycles in medicinal chemistry thanks to its wide ranges of biological activities including antimalarial, anticancer, and anti-inflammatory. TCMDC-125133 containing a quinazolinedione pharmacophore displays promising antimalarial activity and low toxicity, as described in the GlaxoSmithKline (GSK) report. Herein, the design and synthesis of novel quinazolinedione derivatives is described on the basis of our previous work on the synthesis of TCMDC-125133, where low-cost chemicals and greener alternatives were used when possible. The initial SAR study focused on the replacement of the valine linker moiety; according to the in silico prediction using SwissADME, concise four-step syntheses toward compounds 4-10 were developed. The in-house synthesized compounds 4-10 were assayed for antimalarial activity against P. falciparum 3D7, and the result revealed that only the compound 2 containing a valine linker was tolerated. Another round of lead optimization focused on the replacement of the m-anisidine moiety in compound 2. A library of 12 derivatives was prepared, and the antimalarial assay showed that potent antimalarial activity could be maintained by replacing the methoxy group in the meta position of the phenyl side chain with a fluorine or chlorine atom (21: IC50 = 36 ± 5 nM, 24: IC50 = 22 ± 5 nM). Further lead optimization is underway to enhance the antimalarial activity of this class of compound. The compounds included in the study possess little to no antiproliferative activity against MCF-7 cells.


Assuntos
Antimaláricos , Humanos , Antimaláricos/química , Células MCF-7 , Plasmodium falciparum , Relação Estrutura-Atividade
3.
Front Microbiol ; 13: 998215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312948

RESUMO

Receptor-binding proteins (RBPs) are located at the viral tail and mediate the initial recognition of phage to a specific bacterial host. Phage RBPs have co-evolved with numerous types of host receptors resulting in the formation of a diverse assortment of cognate pairs of RBP-receptors that function during the phage attachment step. Although several Clostridioides difficile bacteriophages have been discovered, their RBPs are poorly described. Using homology analysis, putative prophage-tail structure (pts) genes were identified from the prophage genome of the C. difficile HN10 strain. Competition and enzyme-linked immunosorbent assays, using recombinant PtsHN10M, demonstrated the interaction of this Pts to C. difficile cells, suggesting a role as a phage RBP. Gel filtration and cross-linking assay revealed the native form of this protein as a homotrimer. Moreover, truncated variants indicated that the C-terminal domain of PtsHN10M was important for binding to C. difficile cells. Interaction of PtsHN10M was also observed to the low-molecular weight subunit of surface-layer protein A (SlpA), located at the outermost surface of C. difficile cells. Altogether, our study highlights the function of PtsHN10M as an RBP and potentially paves the way toward phage engineering and phage therapy against C. difficile infection.

4.
Neurotoxicology ; 93: 71-83, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063984

RESUMO

Cypermethrin (CYP), a synthetic pyrethroid of class II, is widely used as a pesticide worldwide. The primary target of cypermethrin is a voltage-gated sodium channel. The neurotoxicity of CYP has been extensively studied in terms of affecting neuronal development, increasing cellular oxidative stress, and apoptosis. However, little is known about how it affects the expression of channel proteins involved in synaptic transmission, as well as the effects of cypermethrin on DNA damage and cell cycle processes. We found that the ligand and voltage-gated calcium channels and proteins involved in synaptic transmission including NMDA 1 receptor subunit, alpha 1A-voltage-dependent calcium channel, synaptotagmin-17, and synaptojanin-2 were downregulated in CYP-treated cells. After 48 h of CYP exposure, cell viability was reduced with flattened and enlarged morphology. The levels of 23 proteins regulating cell cycle processes were altered in CYP-treated cells, according to a proteomic study. The cell cycle analysis showed elevated G0/G1 cell cycle arrest and DNA fragmentation at the sub-G0 stage after CYP exposure. CYP treatment also increased senescence-associated ß-galactosidase positive cells, DNA damage, and apoptotic markers. Taken together, the current study showed that cypermethrin exposure caused DNA damage and hastened cellular senescence and apoptosis via disrupting cell cycle regulation. In addition, despite its primary target sodium channel, CYP might cause synaptic dysfunction via the downregulation of synaptic proteins and dysregulation of synapse-associated ion channels.


Assuntos
Inseticidas , Neuroblastoma , Piretrinas , Humanos , Proteômica , Inseticidas/toxicidade , Piretrinas/toxicidade , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Canais Iônicos
5.
World J Gastroenterol ; 27(42): 7210-7232, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876784

RESUMO

Clostridioides difficile (C. difficile) is a gram-positive, anaerobic spore-forming bacterium and a major cause of antibiotic-associated diarrhea. Humans are naturally resistant to C. difficile infection (CDI) owing to the protection provided by healthy gut microbiota. When the gut microbiota is disturbed, C. difficile can colonize, produce toxins, and manifest clinical symptoms, ranging from asymptomatic diarrhea and colitis to death. Despite the steady-if not rising-prevalence of CDI, it will certainly become more problematic in a world of antibiotic overuse and the post-antibiotic era. C. difficile is naturally resistant to most of the currently used antibiotics as it uses multiple resistance mechanisms. Therefore, current CDI treatment regimens are extremely limited to only a few antibiotics, which include vancomycin, fidaxomicin, and metronidazole. Therefore, one of the main challenges experienced by the scientific community is the development of alternative approaches to control and treat CDI. In this Frontier article, we collectively summarize recent advances in alternative treatment approaches for CDI. Over the past few years, several studies have reported on natural product-derived compounds, drug repurposing, high-throughput library screening, phage therapy, and fecal microbiota transplantation. We also include an update on vaccine development, pre- and pro-biotics for CDI, and toxin antidote approaches. These measures tackle CDI at every stage of disease pathology via multiple mechanisms. We also discuss the gaps and concerns in these developments. The next epidemic of CDI is not a matter of if but a matter of when. Therefore, being well-equipped with a collection of alternative therapeutics is necessary and should be prioritized.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/efeitos adversos , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Transplante de Microbiota Fecal , Humanos , Desenvolvimento de Vacinas
6.
Antibiotics (Basel) ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34439034

RESUMO

In recent decades, the incidence of Clostridioides difficile infection (CDI) has remained high in both community and health-care settings. With the increasing rate of treatment failures and its ability to form spores, an alternative treatment for CDI has become a global priority. We used the microdilution assay to determine minimal inhibitory concentrations (MICs) of vancomycin and teicoplanin against 30 distinct C. difficile strains isolated from various host origins. We also examined the effect of drugs on spore germination and outgrowth by following the development of OD600. Finally, we confirmed the spore germination and cell stages by microscopy. We showed that teicoplanin exhibited lower MICs compared to vancomycin in all tested isolates. MICs of teicoplanin ranged from 0.03-0.25 µg/mL, while vancomycin ranged from 0.5-4 µg/mL. Exposure of C. difficile spores to broth supplemented with various concentrations of antimicrobial agents did not affect the initiation of germination, but the outgrowth to vegetative cells was inhibited by all test compounds. This finding was concordant with aberrant vegetative cells after antibiotic treatment observed by light microscopy. This work highlights the efficiency of teicoplanin for treatment of C. difficile through prevention of vegetative cell outgrowth.

7.
Antibiotics (Basel) ; 10(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199301

RESUMO

Clostridioides difficile has been recognized as a life-threatening pathogen that causes enteric diseases, including antibiotic-associated diarrhea and pseudomembranous colitis. The severity of C. difficile infection (CDI) correlates with toxin production and antibiotic resistance of C. difficile. In Thailand, the data addressing ribotypes, toxigenic, and antimicrobial susceptibility profiles of this pathogen are scarce and some of these data sets are limited. In this study, two groups of C. difficile isolates in Thailand, including 50 isolates collected from 2006 to 2009 (THA group) and 26 isolates collected from 2010 to 2012 (THB group), were compared for toxin genes and ribotyping profiles. The production of toxins A and B were determined on the basis of toxin gene profiles. In addition, minimum inhibitory concentration of eight antibiotics were examined for all 76 C. difficile isolates. The isolates of the THA group were categorized into 27 A-B+CDT- (54%) and 23 A-B-CDT- (46%), while the THB isolates were classified into five toxigenic profiles, including six A+B+CDT+ (23%), two A+B+CDT- (8%), five A-B+CDT+ (19%), seven A-B+CDT- (27%), and six A-B-CDT- (23%). By visually comparing them to the references, only five ribotypes were identified among THA isolates, while 15 ribotypes were identified within THB isolates. Ribotype 017 was the most common in both groups. Interestingly, 18 unknown ribotyping patterns were identified. Among eight tcdA-positive isolates, three isolates showed significantly greater levels of toxin A than the reference strain. The levels of toxin B in 3 of 47 tcdB-positive isolates were significantly higher than that of the reference strain. Based on the antimicrobial susceptibility test, metronidazole showed potent efficiency against most isolates in both groups. However, high MIC values of cefoxitin (MICs 256 µg/mL) and chloramphenicol (MICs ≥ 64 µg/mL) were observed with most of the isolates. The other five antibiotics exhibited diverse MIC values among two groups of isolates. This work provides evidence of temporal changes in both C. difficile strains and patterns of antimicrobial resistance in Thailand.

8.
Comput Struct Biotechnol J ; 19: 2905-2920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34094001

RESUMO

ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen.

9.
Analyst ; 146(2): 471-477, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33165486

RESUMO

COVID-19, caused by the infection of SARS-CoV-2, has emerged as a rapidly spreading infection. The disease has now reached the level of a global pandemic and as a result a more rapid and simple detection method is imperative to curb the spread of the virus. We aimed to develop a visual diagnostic platform for SARS-CoV-2 based on colorimetric RT-LAMP with levels of sensitivity and specificity comparable to that of commercial qRT-PCR assays. In this work, the primers were designed to target a conserved region of the RNA-dependent RNA polymerase gene (RdRp). The assay was characterized for its sensitivity and specificity, and validated with clinical specimens collected in Thailand. The developed colorimetric RT-LAMP assay could amplify the target gene and enabled visual interpretation in 60 min at 65 °C. No cross-reactivity with six other common human respiratory viruses (influenza A virus subtypes H1 and H3, influenza B virus, respiratory syncytial virus types A and B, and human metapneumovirus) and five other human coronaviruses (MERS-CoV, HKU-1, OC43, 229E and NL63) was observed. The limit of detection was 25 copies per reaction when evaluated with contrived specimens. However, the detection rate at this concentration fell to 95.8% when the incubation time was reduced from 60 to 30 min. The diagnostic performance of the developed RT-LAMP assay was evaluated in 2120 clinical specimens and compared with the commercial qRT-PCR. The results revealed high sensitivity and specificity of 95.74% and 99.95%, respectively. The overall accuracy of the RT-LAMP assay was determined to be 99.86%. In summary, our results indicate that the developed colorimetric RT-LAMP provides a simple, sensitive and reliable approach for the detection of SARS-CoV-2 in clinical samples, implying its beneficial use as a diagnostic platform for COVID-19 screening.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Colorimetria/métodos , Programas de Rastreamento/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/genética , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Humanos , RNA Viral/análise , Transcrição Reversa , SARS-CoV-2/isolamento & purificação
10.
Sci Rep ; 10(1): 6497, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300130

RESUMO

Drug resistance in Clostridioides difficile becomes a public health concern worldwide, especially as the hypervirulent strains show decreased susceptibility to the first-line antibiotics for C. difficile treatment. Therefore, the simultaneous discovery and development of new compounds to fight this pathogen are urgently needed. In order to determinate new drugs active against C. difficile, we identified ticagrelor, utilized for the prevention of thrombotic events, as exhibiting potent growth-inhibitory activity against C. difficile. Whole-cell growth inhibition assays were performed and compared to vancomycin and metronidazole, followed by determining time-kill kinetics against C. difficile. Activities against biofilm formation and spore germination were also evaluated. Leakage analyses and electron microscopy were applied to confirm the disruption of membrane structure. Finally, ticagrelor's ability to synergize with vancomycin and metronidazole was determined using checkerboard assays. Our data showed that ticagrelor exerted activity with a MIC range of 20-40 µg/mL against C. difficile. This compound also exhibited an inhibitory effect on biofilm formation and spore germination. Additionally, ticagrelor did not interact with vancomycin nor metronidazole. Our findings revealed for the first time that ticagrelor could be further developed as a new antimicrobial agent for fighting against C. difficile.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Infecção Hospitalar/tratamento farmacológico , Reposicionamento de Medicamentos , Ticagrelor/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Clostridioides difficile/citologia , Infecções por Clostridium/microbiologia , Infecção Hospitalar/microbiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Ticagrelor/uso terapêutico , Vancomicina/farmacologia
11.
Proc Natl Acad Sci U S A ; 113(8): 2080-5, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858419

RESUMO

The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs.


Assuntos
Antimaláricos , Artemisininas , Lactonas , Estágios do Ciclo de Vida/efeitos dos fármacos , Sondas Moleculares , Plasmodium falciparum/metabolismo , Proteínas de Protozoários , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/síntese química , Artemisininas/química , Artemisininas/farmacologia , Química Click , Humanos , Lactonas/síntese química , Lactonas/química , Lactonas/farmacologia , Sondas Moleculares/síntese química , Sondas Moleculares/química , Sondas Moleculares/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...