Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119821, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169265

RESUMO

Offshore wind development is in its nascent stages in the United States. Recent research indicates that the visual impacts of offshore wind farms are viewed negatively by the general population. This North Carolina application is the first US-focused discrete choice experiment that explicitly asks respondents to consider the positive local and global benefits from offshore wind development, such as job creation and greenhouse gas emission reductions, simultaneously with their visual impacts. We find significant willingness to pay (WTP) for reducing the visual impacts of offshore wind farms, and that the extent of disamenity varies in the population and with placement along developed tourist towns (as much as $783/year for three years) or preserved coastlines (as much as $451/year for three years). We also find that some preference classes value projects that create permanent jobs and reduce carbon emissions. We use our estimates of preferences for the positive and negative attributes to explore specific wind farm configurations and locations that could achieve positive consensus in a heterogenous population.


Assuntos
Fontes Geradoras de Energia , Vento , Humanos , Estados Unidos , North Carolina , Fazendas
2.
Acta Neuropathol Commun ; 11(1): 182, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974279

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are related neurodegenerative diseases that belong to a common disease spectrum based on overlapping clinical, pathological and genetic evidence. Early pathological changes to the morphology and synapses of affected neuron populations in ALS/FTD suggest a common underlying mechanism of disease that requires further investigation. Fused in sarcoma (FUS) is a DNA/RNA-binding protein with known genetic and pathological links to ALS/FTD. Expression of ALS-linked FUS mutants in mice causes cognitive and motor defects, which correlate with loss of motor neuron dendritic branching and synapses, in addition to other pathological features of ALS/FTD. The role of ALS-linked FUS mutants in causing ALS/FTD-associated disease phenotypes is well established, but there are significant gaps in our understanding of the cell-autonomous role of FUS in promoting structural changes to motor neurons, and how these changes relate to disease progression. Here we generated a neuron-specific FUS-transgenic mouse model expressing the ALS-linked human FUSR521G variant, hFUSR521G/Syn1, to investigate the cell-autonomous role of FUSR521G in causing loss of dendritic branching and synapses of motor neurons, and to understand how these changes relate to ALS-associated phenotypes. Longitudinal analysis of mice revealed that cognitive impairments in juvenile hFUSR521G/Syn1 mice coincide with reduced dendritic branching of cortical motor neurons in the absence of motor impairments or changes in the neuromorphology of spinal motor neurons. Motor impairments and dendritic attrition of spinal motor neurons developed later in aged hFUSR521G/Syn1 mice, along with FUS cytoplasmic mislocalisation, mitochondrial abnormalities and glial activation. Neuroinflammation promotes neuronal dysfunction and drives disease progression in ALS/FTD. The therapeutic effects of inhibiting the pro-inflammatory nuclear factor kappa B (NF-κB) pathway with an analog of Withaferin A, IMS-088, were assessed in symptomatic hFUSR521G/Syn1 mice and were found to improve cognitive and motor function, increase dendritic branches and synapses of motor neurons, and attenuate other ALS/FTD-associated pathological features. Treatment of primary cortical neurons expressing FUSR521G with IMS-088 promoted the restoration of dendritic mitochondrial numbers and mitochondrial activity to wild-type levels, suggesting that inhibition of NF-κB permits the restoration of mitochondrial stasis in our models. Collectively, this work demonstrates that FUSR521G has a cell-autonomous role in causing early pathological changes to dendritic and synaptic structures of motor neurons, and that these changes precede motor defects and other well-known pathological features of ALS/FTD. Finally, these findings provide further support that modulation of the NF-κB pathway in ALS/FTD is an important therapeutic approach to attenuate disease.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Idoso , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Progressão da Doença , Demência Frontotemporal/patologia , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação , NF-kappa B/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
3.
Neurotherapeutics ; 20(4): 1215-1228, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268847

RESUMO

Giant axonal neuropathy (GAN) is a disease caused by a deficiency of gigaxonin, a mediator of the degradation of intermediate filament (IF) proteins. A lack of gigaxonin alters the turnover of IF proteins, provoking accumulation and disorganization of neurofilaments (NFs) in neurons, a hallmark of the disease. However, the effects of IF disorganization on neuronal function remain unknown. Here, we report that cultured embryonic dorsal root ganglia (DRG) neurons derived from Gan-/- mice exhibit accumulations of IF proteins and defects in fast axonal transport of organelles. Kymographs generated by time-lapse microscopy revealed substantial reduction of anterograde movements of mitochondria and lysosomes in axons of Gan-/- DRG neurons. Treatment of Gan-/- DRG neurons with Tubastatin A (TubA) increased the levels of acetylated tubulin and it restored the normal axonal transport of these organelles. Furthermore, we tested the effects of TubA in a new mouse model of GAN consisting of Gan-/- mice with overexpression of peripherin (Prph) transgene. Treatment of 12-month-old Gan-/-;TgPer mice with TubA led to a slight amelioration of motor function, especially a significant improvement of gait performance as measured by footprint analyses. Moreover, TubA treatment reduced the abnormal accumulations of Prph and NF proteins in spinal neurons and it boosted the levels of Prph transported into peripheral nerve axons. These results suggest that drug inhibitors of histone deacetylase aiming to enhance axonal transport should be considered as a potential treatment for GAN disease.


Assuntos
Proteínas do Citoesqueleto , Neuropatia Axonal Gigante , Camundongos , Animais , Proteínas do Citoesqueleto/metabolismo , Transporte Axonal , Proteínas de Filamentos Intermediários/metabolismo , Axônios/metabolismo , Neuropatia Axonal Gigante/metabolismo , Neuropatia Axonal Gigante/terapia , Gânglios Espinais/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(15): e2210417120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011190

RESUMO

High-quality water resources provide a wide range of benefits, but the value of water quality is often not fully represented in environmental policy decisions, due in large part to an absence of water quality valuation estimates at large, policy relevant scales. Using data on property values with nationwide coverage across the contiguous United States, we estimate the benefits of lake water quality as measured through capitalization in housing markets. We find compelling evidence that homeowners place a premium on improved water quality. This premium is largest for lakefront property and decays with distance from the waterbody. In aggregate, we estimate that 10% improvement of water quality for the contiguous United States has a value of $6 to 9 billion to property owners. This study provides credible evidence for policymakers to incorporate lake water quality value estimates in environmental decision-making.

5.
Proc Natl Acad Sci U S A ; 120(18): e2120251119, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094119

RESUMO

Scientific knowledge related to quantifying the monetized benefits for landscape-wide water quality improvements does not meet current regulatory and benefit-cost analysis needs in the United States. In this study we addressed this knowledge gap by incorporating the Biological Condition Gradient (BCG) as a water quality metric into a stated preference survey capable of estimating the total economic value (use and nonuse) for aquatic ecosystem improvements. The BCG is grounded in ecological principles and generalizable and transferable across space. Moreover, as the BCG translates available data on biological condition into a score on a 6-point scale, it provides a simple metric that can be readily communicated to the public. We applied our BCG-based survey instrument to households across the Upper Mississippi, Ohio, and Tennessee river basins and report values for a range of potential improvements that vary by location, spatial scale, and the scope of the water quality change. We found that people are willing to pay twice as much for an improvement policy that targets their home watershed (defined as a four-digit hydrologic unit) versus a more distant one. We also found that extending the spatial scale of a local policy beyond the home watershed does not generate additional benefits to the household. Finally, our results suggest that nonuse sources of value (e.g., bequest value, intrinsic aesthetic value) are an important component of overall benefits.


Assuntos
Ecossistema , Rios , Humanos , Estados Unidos , Ohio , Mississippi
7.
Ticks Tick Borne Dis ; 13(3): 101925, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35255349

RESUMO

Lyme disease and other tick-borne diseases are a major public health threat in the Upper Midwestern United States, including Michigan, Minnesota, and Wisconsin. To prevent tick bites and tick-borne diseases, public health officials commonly recommend personal protective measures and property management techniques. Adoption of tick-borne disease prevention behaviors and practices by individuals are, however, highly variable. We aimed to characterize current tick-borne disease knowledge, attitudes, and prevention behaviors (KAB) practiced by the public in these states, as well as their willingness to use specific tick control methods. We conducted a population-based survey in summer 2019 in 48 high-risk counties (those having a five-year average (2013-2017) Lyme disease incidence of ≥ 10 cases per 100,000 persons per year), in Michigan, Minnesota, and Wisconsin. A total of 2713 surveys were analyzed; survey weights were used to account for household selection probability and post-stratified to match county-level joint age and sex population distributions in population-level inference. An estimated 98% of the population had heard of Lyme disease, with most perceiving it as very or extremely serious (91%); however, only an estimated 25% perceived tick-borne diseases as very or extremely common in their community. Among those who spent time in places with ticks from April through October, an estimated 68% check themselves thoroughly for ticks most of the time or always and 43% use bug repellent on skin or clothing most of the time or always. An estimated 13% of the population had ever treated their property with a pesticide to kill ticks, and 3% had ever used devices that apply pesticide to rodents to kill ticks on their property. Willingness to practice tick bite prevention behaviors, however, was estimated to be much higher; with 82% being willing to perform tick checks at least once a day, and more than 60% willing to use bug repellent, tick control products on pets, or to bathe within two hours of being outdoors. We found that residents would likely be willing to support a county-wide tick control program to reduce the risk of tick-borne disease in their community (81%) or to apply tick control products to their property to reduce the risk of tick-borne disease in their household (79%). Tick checks were more likely to be practiced among participants who perceived tick-borne diseases to be highly prevalent in their community, if they or a household member had been previously diagnosed with a tick-borne disease?, or if they perceived tick exposure to be likely around their home, cabin, or vacation home. In addition, property-based tick control methods were associated with perceived risk of encountering ticks around the home, cabin, or vacation home. Participants who had seen information from state health departments were also more likely to practice preventive measures. The most common reported barriers to using any of these methods were forgetfulness, safety concerns, and lack of awareness. Our survey findings shed light on how residents from these Upper Midwest states may adopt tick control and tick bite prevention measures and how public health outreach may be most effective for this population.


Assuntos
Doença de Lyme , Picadas de Carrapatos , Doenças Transmitidas por Carrapatos , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/prevenção & controle , Estados Unidos/epidemiologia , Wisconsin/epidemiologia
9.
Mol Neurodegener ; 16(1): 1, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413517

RESUMO

BACKGROUND: TDP-43 proteinopathy is a pathological hallmark of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). So far, there is no therapy available for these neurodegenerative diseases. In addition, the impact of TDP-43 proteinopathy on neuronal translational profile also remains unknown. METHODS: Biochemical, immunohistology and assay-based studies were done with cell cultures and transgenic mice models. We also used Ribotag with microarray and proteomic analysis to determine the neuronal translational profile in the mice model of ALS/FTD. RESULTS: Here, we report that oral administration of a novel analog (IMS-088) of withaferin-A, an antagonist of nuclear factor kappa-B (NF-ĸB) essential modulator (NEMO), induced autophagy and reduced TDP-43 proteinopathy in the brain and spinal cord of transgenic mice expressing human TDP-43 mutants, models of ALS/FTD. Treatment with IMS-088 ameliorated cognitive impairment, reduced gliosis in the brain of ALS/FTD mouse models. With the Ribotrap method, we investigated the impact of TDP-43 proteinopathy and IMS-088 treatment on the translation profile of neurons of one-year old hTDP-43A315T mice. TDP-43 proteinopathy caused translational dysregulation of specific mRNAs including translational suppression of neurofilament mRNAs resulting in 3 to 4-fold decrease in levels type IV neurofilament proteins. Oral administration of IMS-088 rescued the translational defects associated with TDP-43 proteinopathy and restored the synthesis of neurofilament proteins, which are essential for axon integrity and synaptic function. CONCLUSIONS: Our study revealed that induction of autophagy reduces TDP-43 pathology and ameliorates the translational defect seen in mice models of ALS/FTD. Based on these results, we suggest IMS-088 and perhaps other inducers of autophagy should be considered as potential therapeutics for neurodegenerative disorders with TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Autofagia/fisiologia , Demência Frontotemporal/metabolismo , RNA Mensageiro/metabolismo , Proteinopatias TDP-43/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/patologia , Humanos , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Camundongos , Neurônios/metabolismo , Medula Espinal/metabolismo
10.
Neurotherapeutics ; 18(1): 286-296, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078279

RESUMO

Withaferin-A, an active withanolide derived from the medicinal herbal plant Withania somnifera induces autophagy, reduces TDP-43 proteinopathy, and improves cognitive function in transgenic mice expressing mutant TDP-43 modelling FTLD. TDP-43 is a nuclear DNA/RNA-binding protein with cellular functions in RNA transcription and splicing. Abnormal cytoplasmic aggregates of TDP-43 occur in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). To date, no effective treatment is available for TDP-43 proteinopathies. Here, we tested the effects of withaferin-A (WFA), an active withanolide extracted from the medicinal herbal plant Withania somnifera, in a transgenic mouse model of FTLD expressing a genomic fragment encoding mutant TDP-43G348C. WFA treatment ameliorated the cognitive performance of the TDP-43G348C mice, and it reduced NF-κB activity and neuroinflammation in the brain. WFA alleviated TDP-43 pathology while it boosted the levels of the autophagic marker LC3BII in the brain. These data suggest that WFA and perhaps other autophagy inducers should be considered as potential therapy for neurodegenerative diseases with TDP-43 pathology.


Assuntos
Cognição/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Degeneração Lobar Frontotemporal/tratamento farmacológico , Vitanolídeos/uso terapêutico , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Imunofluorescência , Masculino , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
J Clin Invest ; 129(4): 1581-1595, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30667370

RESUMO

The cytoplasmic aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of degenerating neurons in amyotrophic lateral sclerosis (ALS) and subsets of frontotemporal dementia (FTD). In order to reduce TDP-43 pathology, we generated single-chain (scFv) antibodies against the RNA recognition motif 1 (RRM1) of TDP-43, which is involved in abnormal protein self-aggregation and interaction with p65 NF-κB. Virus-mediated delivery into the nervous system of a scFv antibody, named VH7Vk9, reduced microgliosis in a mouse model of acute neuroinflammation and mitigated cognitive impairment, motor defects, TDP-43 proteinopathy, and neuroinflammation in transgenic mice expressing ALS-linked TDP-43 mutations. These results suggest that antibodies targeting the RRM1 domain of TDP-43 might provide new therapeutic avenues for the treatment of ALS and FTD.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Proteínas de Ligação a DNA , Dependovirus , Demência Frontotemporal/terapia , Anticorpos de Cadeia Única , Transdução Genética , Motivos de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Camundongos , Camundongos Transgênicos , Mutação , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/genética
12.
Proc Natl Acad Sci U S A ; 116(12): 5246-5253, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30478054

RESUMO

Asthma ranks among the most costly of chronic diseases, accounting for over $50 billion annually in direct medical expenditures in the United States. At the same time, evidence has accumulated that fine particulate matter pollution can exacerbate asthma symptoms and generate substantial economic costs. To measure these costs, we use a unique nationwide panel dataset tracking asthmatic individuals' use of rescue medication and their exposure to PM2.5 (particulate matter with an aerodynamic diameter of <2.5 µm) concentration between 2012 and 2017, to estimate the causal relationship between pollution and inhaler use. Our sample consists of individuals using an asthma digital health platform, which relies on a wireless sensor to track the place and time of inhaler use events, as well as regular nonevent location and time indicators. These data provide an accurate measurement of inhaler use and allow spatially and temporally resolute assignment of pollution exposure. Using a high-frequency research design and individual fixed effects, we find that a 1 µg/m3 (12%) increase in weekly exposure to PM2.5 increases weekly inhaler use by 0.82%. We also show that there is seasonal, regional, and income-based heterogeneity in this response. Using our response prediction, and an estimate from the literature on the willingness to pay to avoid asthma symptoms, we show that a nationwide 1 µg/m3 reduction in particulate matter concentration would generate nearly $350 million annually in economic benefits.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/economia , Asma/economia , Asma/prevenção & controle , Material Particulado/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/economia , Custos de Cuidados de Saúde/estatística & dados numéricos , Humanos , Estados Unidos
13.
J Neuroinflammation ; 14(1): 45, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28253906

RESUMO

BACKGROUND: Nestin is a known marker of neuronal progenitor cells in the adult brain. Following neuro- and gliogenesis, nestin is replaced by cell type-specific intermediate filaments, e.g., neurofilaments for panneuronal expression and glial fibrillary acidic protein as a specific marker of mature astrocytes. While previous work have been mostly focused on the neuronal fate of nestin-positive progenitors, in the present study, we sought to investigate in real time how nestin signals and cellular expression patterns are controlled in the context of neuroinflammatory challenge and ischemic brain injury. METHODS: To visualize effects of neuroinflammation on neurogenesis/gliogenesis, we created a transgenic model bearing the dual reporter system luciferase and GFP under transcriptional control of the murine nestin promoter. In this model, transcriptional activation of nestin was visualized from the brains of living animals using biophotonic/bioluminescence molecular imaging and a high resolution charged coupled device camera. Nestin induction profiles in vivo and in tissue sections were analyzed in two different experimental paradigms: middle cerebral artery occlusion and lipopolysaccharide-induced innate immune stimuli. RESULTS: We report here a context- and injury-dependent induction and cellular expression profile of nestin. While in the baseline conditions the nestin signal and/or GFP expression was restricted to neuronal progenitors, the cellular expression patterns of nestin following innate immune challenge and after stroke markedly differed shifting the cellular expression patterns towards activated microglia/macrophages and astrocytes. CONCLUSIONS: Our results suggest that nestin may serve as a context-dependent biomarker of inflammatory response in glial cells including activated microglia/macrophages.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Mediadores da Inflamação/metabolismo , Microglia/metabolismo , Imagem Molecular/métodos , Nestina/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Inflamação/metabolismo , Mediadores da Inflamação/análise , Medições Luminescentes/métodos , Camundongos , Camundongos Transgênicos , Microglia/química , Nestina/análise , Ratos
14.
Neurotherapeutics ; 14(2): 447-462, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27928708

RESUMO

Abnormal cytoplasmic mislocalization of transactive response DNA binding protein 43 (TARDBP or TDP-43) in degenerating neurons is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous work suggested that nuclear factor kappa B (NF-κB) may constitute a therapeutic target for TDP-43-mediated disease. Here, we investigated the effects of root extract of Withania somnifera (Ashwagandha), an herbal medicine with anti-inflammatory properties, in transgenic mice expressing a genomic fragment encoding human TDP-43A315T mutant. Ashwagandha extract was administered orally to hTDP-43A315T mice for a period of 8 weeks starting at 64 and 48 weeks of age for males and females, respectively. The treatment of hTDP-43A315T mice ameliorated their motor performance on rotarod test and cognitive function assessed by the passive avoidance test. Microscopy examination of tissue samples revealed that Ashwagandha treatment of hTDP-43A315T mice improved innervation at neuromuscular junctions, attenuated neuroinflammation, and reduced NF-κB activation. Remarkably, Ashwagandha treatment reversed the cytoplasmic mislocalization of hTDP-43 in spinal motor neurons and in brain cortical neurons of hTDP-43A315T mice and it reduced hTDP-43 aggregation. In vitro evidence is presented that the neuronal rescue of TDP-43 mislocalization may be due to the indirect effect of factors released from microglial cells exposed to Ashwagandha. These results suggest that Ashwagandha and its constituents might represent promising therapeutics for TDP-43 proteinopathies.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/fisiopatologia , Extratos Vegetais/administração & dosagem , Proteinopatias TDP-43/fisiopatologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/prevenção & controle , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/prevenção & controle , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/prevenção & controle , Masculino , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Teste de Desempenho do Rota-Rod , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/prevenção & controle , Withania
15.
Hum Mol Genet ; 25(21): 4771-4786, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28175304

RESUMO

Recent genetic studies yielded conflicting results regarding a role for the variant chromogranin B (CHGB)P413L allele as a disease modifier in ALS. Moreover, potential deleterious effects of the CHGBP413L variant in ALS pathology have not been investigated. Here we report that in transfected cultured cells, the variant CHGBL413 protein exhibited aberrant properties including mislocalization, failure to interact with mutant superoxide dismutase 1 (SOD1) and defective secretion. The CHGBL413 transgene in SOD1G37R mice precipitated disease onset and pathological changes related to misfolded SOD1 specifically in female mice. However, the CHGBL413 variant also slowed down disease progression in SOD1G37R mice, which is in line with a very slow disease progression that we report for a Swedish woman with ALS who is carrier of two mutant SOD1D90A alleles and two variant CHGBP413L and CHGBR458Q alleles. In contrast, overexpression of the common CHGBP413 allele in SOD1G37R mice did not affect disease onset but significantly accelerated disease progression and pathological changes. As in transgenic mice, the CHGBP413L allele conferred an earlier ALS disease onset in women of Japanese and French Canadian origins with less effect in men. Evidence is presented that the sex-dependent effects of CHGBL413 allelic variant in ALS may arise from enhanced neuronal expression of CHGB in females because of a sex-determining region Y element in the gene promoter. Thus, our results suggest that CHGB variants may act as modifiers of onset and progression in some ALS populations and especially in females because of higher expression levels compared to males.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cromogranina B/genética , Cromogranina B/metabolismo , Alelos , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Frequência do Gene/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores Sexuais , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
16.
Mol Brain ; 8(1): 71, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-26521126

RESUMO

BACKGROUND: Mutations in the gene encoding Ubiquilin-2 (UBQLN2) are linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). UBQLN2 plays a central role in ubiquitin proteasome system (UPS) and UBQLN2 mutants can form cytoplasmic aggregates in vitro and in vivo. RESULTS: Here, we report that overexpression of WT or mutant UBQLN2 species enhanced nuclear factor κB (NF-κB) activation in Neuro2A cells. The inhibition of NF-κB stress-mediated activation with SB203580, a p38 MAPK inhibitor, demonstrated a role for MAPK in NF-κB activation by UBQLN2 species. Live cell imaging and microscopy showed that UBQLN2 aggregates are dynamic structures that promote cytoplasmic accumulation of TAR DNA-binding protein (TDP-43), a major component of ALS inclusion bodies. Furthermore, up-regulation of UBQLN2 species in neurons caused an ER-stress response and increased their vulnerability to death by toxic mediator TNF-α. Withaferin A, a known NF-κB inhibitor, reduced mortality of Neuro2A cells overexpressing UBQLN2 species. CONCLUSIONS: These results suggest that UBQLN2 dysregulation in neurons can drive NF-κB activation and cytosolic TDP-43 aggregation, supporting the concept of pathway convergence in ALS pathogenesis. These Ubiquilin-2 pathogenic pathways might represent suitable therapeutic targets for future ALS treatment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Agregados Proteicos , Ubiquitinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteínas Relacionadas à Autofagia , Morte Celular , Proteínas de Ligação a DNA/química , Estresse do Retículo Endoplasmático , Humanos , Proteínas I-kappa B/metabolismo , Corpos de Inclusão/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Inibidor de NF-kappaB alfa , RNA Interferente Pequeno/metabolismo , Estresse Fisiológico , Fator de Transcrição RelA/metabolismo , Regulação para Cima
17.
J Neurosci ; 32(50): 18186-95, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-23238732

RESUMO

Tar DNA binding protein 43 (TDP-43) mislocalization and aggregation is a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia. Moreover, TDP-43 mRNA was found to be upregulated by ∼2.5-fold in the spinal cord of sporadic ALS subjects. Here we have examined the effects of nerve injury in new transgenic mouse models overexpressing by approximately threefold wild-type or mutant (G348C) TDP-43 species. Four weeks after axonal crush of sciatic nerve, TDP-43 transgenic mice remained paralyzed at the injured limb unlike control mice, which had regained most of their normal mobility. In contrast to normal mice, TDP-43 transgenic mice exhibited sustained elevation of TDP-43 cytoplasmic levels in motor neurons after nerve crush, and the relocalization of TDP-43 to the nucleus was delayed by several weeks. After crush, peripherin and ubiquitin levels remained also significantly elevated in TDP-43 transgenic mice compared with control mice. Analysis of the sciatic nerve at 11 d after nerve crush showed that the number of regenerating axons in the distal portion of the lesion was considerably reduced in TDP-43 transgenic mice, especially in TDP-43(G348C) mice, which exhibited a reduction of ∼40%. In addition, markers of neuroinflammation were detected at much higher levels in TDP-43 transgenic mice. These results suggest that a deregulation of TDP-43 expression in ALS is a phenomenon that can affect the regenerative responses to neuronal injury and regrowth potential of axons.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Axônios/patologia , Proteínas de Ligação a DNA/metabolismo , Regeneração Nervosa/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Axônios/metabolismo , Western Blotting , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Compressão Nervosa , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
18.
J Exp Med ; 208(12): 2429-47, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22084410

RESUMO

TDP-43 (TAR DNA-binding protein 43) inclusions are a hallmark of amyotrophic lateral sclerosis (ALS). In this study, we report that TDP-43 and nuclear factor κB (NF-κB) p65 messenger RNA and protein expression is higher in spinal cords in ALS patients than healthy individuals. TDP-43 interacts with and colocalizes with p65 in glial and neuronal cells from ALS patients and mice expressing wild-type and mutant TDP-43 transgenes but not in cells from healthy individuals or nontransgenic mice. TDP-43 acted as a co-activator of p65, and glial cells expressing higher amounts of TDP-43 produced more proinflammatory cytokines and neurotoxic mediators after stimulation with lipopolysaccharide or reactive oxygen species. TDP-43 overexpression in neurons also increased their vulnerability to toxic mediators. Treatment of TDP-43 mice with Withaferin A, an inhibitor of NF-κB activity, reduced denervation in the neuromuscular junction and ALS disease symptoms. We propose that TDP-43 deregulation contributes to ALS pathogenesis in part by enhancing NF-κB activation and that NF-κB may constitute a therapeutic target for the disease.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Junção Neuromuscular/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo , Análise de Variância , Animais , Western Blotting , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Neuroglia/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Neurônios/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/citologia , Medula Espinal/patologia , Fator de Transcrição RelA/antagonistas & inibidores , Transgenes/genética , Vitanolídeos/farmacologia
19.
Brain ; 134(Pt 9): 2610-26, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21752789

RESUMO

Transactive response DNA-binding protein 43 ubiquitinated inclusions are a hallmark of amyotrophic lateral sclerosis and of frontotemporal lobar degeneration with ubiquitin-positive inclusions. Yet, mutations in TARDBP, the gene encoding these inclusions are associated with only 3% of sporadic and familial amyotrophic lateral sclerosis. Recent transgenic mouse studies have revealed a high degree of toxicity due to transactive response DNA-binding protein 43 proteins when overexpressed under the control of strong neuronal gene promoters, resulting in early paralysis and death, but without the presence of amyotrophic lateral sclerosis-like ubiquitinated transactive response DNA-binding protein 43-positive inclusions. To better mimic human amyotrophic lateral sclerosis, we generated transgenic mice that exhibit moderate and ubiquitous expression of transactive response DNA-binding protein 43 species using genomic fragments that encode wild-type human transactive response DNA-binding protein 43 or familial amyotrophic lateral sclerosis-linked mutant transactive response DNA-binding protein 43 (G348C) and (A315T). These novel transgenic mice develop many age-related pathological and biochemical changes reminiscent of human amyotrophic lateral sclerosis including ubiquitinated transactive response DNA-binding protein 43-positive inclusions, transactive response DNA-binding protein 43 cleavage fragments, intermediate filament abnormalities, axonopathy and neuroinflammation. All three transgenic mouse models (wild-type, G348C and A315T) exhibited impaired learning and memory capabilities during ageing, as well as motor dysfunction. Real-time imaging with the use of biophotonic transactive response DNA-binding protein 43 transgenic mice carrying a glial fibrillary acidic protein-luciferase reporter revealed that the behavioural defects were preceded by induction of astrogliosis, a finding consistent with a role for reactive astrocytes in amyotrophic lateral sclerosis pathogenesis. These novel transactive response DNA-binding protein 43 transgenic mice mimic several characteristics of human amyotrophic lateral sclerosis-frontotemporal lobar degeneration and they should provide valuable animal models for testing therapeutic approaches.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Camundongos Transgênicos , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Axônios/ultraestrutura , Comportamento Animal/fisiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/fisiopatologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Degeneração Lobar Frontotemporal/fisiopatologia , Humanos , Corpos de Inclusão/patologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Aprendizagem em Labirinto , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/metabolismo , Testes Neuropsicológicos , Periferinas , Teste de Desempenho do Rota-Rod
20.
Horm Mol Biol Clin Investig ; 2(3): 311-8, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25961203

RESUMO

17ß-Hydroxysteroid dehydrogenases (17ß-HSDs) are enzymes issued from convergent evolution of activity from various ancestral genes having different functions. Type 12 17ß-HSD (17ß-HSD12) was described as a bifunctional enzyme, involved in the biosynthesis of estradiol (E2) and the elongation of very long chain fatty acid (VLCFA). It catalyzes selectively the transformation of estrone (E1) into estradiol (E2) in human and primates, whereas in the mouse and Caenorhabditis elegans the enzyme catalyzes the 17ß-reduction of both androgens and estrogens. It is also able to catalyze the reduction of 3-keto-acylCoA into 3-hydroxy-acylCoA in the elongation cycle of VLCFA biosynthesis. To further understand the physiological role of 17ß-HSD12, we performed targeted disruption of the Hsd17b12 gene by substituting exons 8 and 9 that contain the active site with a neomycin cassette. The data indicate that heterozygous (HSD17B12+/-) mice are viable with reduced levels of sex steroids, whereas homozygous (HSD17B12-/-) mice show embryonic lethality. The present data are in agreement with the bifunctional activities of 17ß-HSD12 suggesting that the VLCFA elongation activity, having its origin in the yeast, is most probably responsible for embryonic lethality in HSD17B12-/-, whereas the more recently acquired 17ß-HSD12 activity is responsible for reduced sex steroid levels in HSD17B12+/-.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...