Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(12): 2449-2464.e8, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267944

RESUMO

Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.


Assuntos
Blastocystis , Microbioma Gastrointestinal , Animais , Humanos , Blastocystis/genética , Microbioma Gastrointestinal/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/metabolismo , Eucariotos
2.
J Eukaryot Microbiol ; 70(1): e12935, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35790054

RESUMO

The chlorophyte algae are a dominant group of photosynthetic eukaryotes. Although many are photoautotrophs, there are also mixotrophs, heterotrophs, and even parasites. The physical characteristics of green algae are also highly diverse, varying greatly in size, shape, and habitat. Given this morphological and trophic diversity, we postulated that diversity may also exist in the protein components controlling intracellular movement of material by vesicular transport. One such set is the multisubunit tethering complexes (MTCs)-components regulating cargo delivery. As they span endomembrane organelles and are well-conserved across eukaryotes, MTCs should be a good proxy for assessing the evolutionary dynamics across the diversity of Chlorophyta. Our results reveal that while green algae carry a generally conserved and unduplicated complement of MTCs, some intriguing variation exists. Notably, we identified incomplete sets of TRAPPII, exocyst, and HOPS/CORVET components in all Mamiellophyceae, and what is more, not a single subunit of Dsl1 was found in Cymbomonas tetramitiformis. As the absence of Dsl1 has been correlated with having unusual peroxisomes, we searched for peroxisome biogenesis machinery, finding very few components in Cymbomonas, suggestive of peroxisome degeneration. Overall, we demonstrate conservation of MTCs across green algae, but with notable taxon-specific losses suggestive of unusual endomembrane systems.


Assuntos
Evolução Biológica , Clorófitas , Organelas , Fotossíntese , Genômica , Clorófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...