Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 42(3): 349-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416472

RESUMO

Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.


Assuntos
Biotecnologia/métodos , Química Verde , Butileno Glicóis/metabolismo , Isótopos de Carbono , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Biologia de Sistemas
2.
Appl Environ Microbiol ; 75(19): 6132-41, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19684179

RESUMO

A wide variety of commercial products can be potentially made from monomeric sugars produced by the dilute acid hydrolysis of lignocellulosic biomass. However, this process is accompanied by side products such as furfural that hinder microbial growth and fermentation. To investigate the mechanism of furfural inhibition, mRNA microarrays of an ethanologenic strain of Escherichia coli (LY180) were compared immediately prior to and 15 min after a moderate furfural challenge. Expression of genes and regulators associated with the biosynthesis of cysteine and methionine was increased by furfural, consistent with a limitation of these critical metabolites. This was in contrast to a general stringent response and decreased expression of many other biosynthetic genes. Of the 20 amino acids individually tested as supplements (100 microM each), cysteine and methionine were the most effective in increasing furfural tolerance with serine (precursor of cysteine), histidine, and arginine of lesser benefit. Supplementation with other reduced sulfur sources such as d-cysteine and thiosulfate also increased furfural tolerance. In contrast, supplementation with taurine, a sulfur source that requires 3 molecules of NADPH for sulfur assimilation, was of no benefit. Furfural tolerance was also increased by inserting a plasmid encoding pntAB, a cytoplasmic NADH/NADPH transhydrogenase. Based on these results, a model is proposed for the inhibition of growth in which the reduction of furfural by YqhD, an enzyme with a low K(m) for NADPH, depletes NADPH sufficiently to limit the assimilation of sulfur into amino acids (cysteine and methionine) by CysIJ (sulfite reductase).


Assuntos
Aldeído Redutase/metabolismo , Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Furaldeído/farmacologia , Sulfito Redutase (NADPH)/metabolismo , Enxofre/antagonistas & inibidores , Aminoácidos/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Meios de Cultura/química , Perfilação da Expressão Gênica , Modelos Biológicos , NADP/metabolismo , Enxofre/metabolismo
3.
BMC Syst Biol ; 3: 15, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19175927

RESUMO

BACKGROUND: Geobacter metallireducens was the first organism that can be grown in pure culture to completely oxidize organic compounds with Fe(III) oxide serving as electron acceptor. Geobacter species, including G. sulfurreducens and G. metallireducens, are used for bioremediation and electricity generation from waste organic matter and renewable biomass. The constraint-based modeling approach enables the development of genome-scale in silico models that can predict the behavior of complex biological systems and their responses to the environments. Such a modeling approach was applied to provide physiological and ecological insights on the metabolism of G. metallireducens. RESULTS: The genome-scale metabolic model of G. metallireducens was constructed to include 747 genes and 697 reactions. Compared to the G. sulfurreducens model, the G. metallireducens metabolic model contains 118 unique reactions that reflect many of G. metallireducens' specific metabolic capabilities. Detailed examination of the G. metallireducens model suggests that its central metabolism contains several energy-inefficient reactions that are not present in the G. sulfurreducens model. Experimental biomass yield of G. metallireducens growing on pyruvate was lower than the predicted optimal biomass yield. Microarray data of G. metallireducens growing with benzoate and acetate indicated that genes encoding these energy-inefficient reactions were up-regulated by benzoate. These results suggested that the energy-inefficient reactions were likely turned off during G. metallireducens growth with acetate for optimal biomass yield, but were up-regulated during growth with complex electron donors such as benzoate for rapid energy generation. Furthermore, several computational modeling approaches were applied to accelerate G. metallireducens research. For example, growth of G. metallireducens with different electron donors and electron acceptors were studied using the genome-scale metabolic model, which provided a fast and cost-effective way to understand the metabolism of G. metallireducens. CONCLUSION: We have developed a genome-scale metabolic model for G. metallireducens that features both metabolic similarities and differences to the published model for its close relative, G. sulfurreducens. Together these metabolic models provide an important resource for improving strategies on bioremediation and bioenergy generation.


Assuntos
Geobacter/genética , Geobacter/metabolismo , Modelos Biológicos , Modelos Genéticos , Biodegradação Ambiental , Biomassa , Simulação por Computador , Ecossistema , Transporte de Elétrons , Metabolismo Energético , Genoma Bacteriano , Geobacter/crescimento & desenvolvimento , Ferro/metabolismo , Redes e Vias Metabólicas , Mutação , Fenótipo , Especificidade da Espécie , Biologia de Sistemas
4.
Metab Eng ; 8(1): 1-13, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16199194

RESUMO

We introduce a computational framework termed OptReg that determines the optimal reaction activations/inhibitions and eliminations for targeted biochemical production. A reaction is deemed up- or downregulated if it is constrained to assume flux values significantly above or below its steady-state before the genetic manipulations. The developed framework is demonstrated by studying the overproduction of ethanol in Escherichia coli. Computational results reveal the existence of synergism between reaction deletions and modulations implying that the simultaneous application of both types of genetic manipulations yields the most promising results. For example, the downregulation of phosphoglucomutase in conjunction with the deletion of oxygen uptake and pyruvate formate lyase yields 99.8% of the maximum theoretical ethanol yield. Conceptually, the proposed strategies redirect both the carbon flux as well as the cofactors to enhance ethanol production in the network. The OptReg framework is a versatile tool for strain design which allows for a broad array of genetic manipulations.


Assuntos
Acetiltransferases/biossíntese , Escherichia coli/enzimologia , Etanol/metabolismo , Modelos Biológicos , Acetiltransferases/genética , Escherichia coli/genética
5.
Genome Res ; 14(11): 2367-76, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15520298

RESUMO

This paper introduces the hierarchical computational framework OptStrain aimed at guiding pathway modifications, through reaction additions and deletions, of microbial networks for the overproduction of targeted compounds. These compounds may range from electrons or hydrogen in biofuel cell and environmental applications to complex drug precursor molecules. A comprehensive database of biotransformations, referred to as the Universal database (with >5700 reactions), is compiled and regularly updated by downloading and curating reactions from multiple biopathway database sources. Combinatorial optimization is then used to elucidate the set(s) of non-native functionalities, extracted from this Universal database, to add to the examined production host for enabling the desired product formation. Subsequently, competing functionalities that divert flux away from the targeted product are identified and removed to ensure higher product yields coupled with growth. This work represents an advancement over earlier efforts by establishing an integrated computational framework capable of constructing stoichiometrically balanced pathways, imposing maximum product yield requirements, pinpointing the optimal substrate(s), and evaluating different microbial hosts. The range and utility of OptStrain are demonstrated by addressing two very different product molecules. The hydrogen case study pinpoints reaction elimination strategies for improving hydrogen yields using two different substrates for three separate production hosts. In contrast, the vanillin study primarily showcases which non-native pathways need to be added into Escherichia coli. In summary, OptStrain provides a useful tool to aid microbial strain design and, more importantly, it establishes an integrated framework to accommodate future modeling developments.


Assuntos
Algoritmos , Bactérias/metabolismo , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Software , Bactérias/genética , Biomassa , Biotransformação , Microbiologia Industrial/métodos , Modelos Biológicos , Análise de Sistemas , Teoria de Sistemas
6.
Biotechnol Bioeng ; 84(6): 647-57, 2003 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-14595777

RESUMO

The advent of genome-scale models of metabolism has laid the foundation for the development of computational procedures for suggesting genetic manipulations that lead to overproduction. In this work, the computational OptKnock framework is introduced for suggesting gene deletion strategies leading to the overproduction of chemicals or biochemicals in E. coli. This is accomplished by ensuring that a drain towards growth resources (i.e., carbon, redox potential, and energy) must be accompanied, due to stoichiometry, by the production of a desired product. Computational results for gene deletions for succinate, lactate, and 1,3-propanediol (PDO) production are in good agreement with mutant strains published in the literature. While some of the suggested deletion strategies are straightforward and involve eliminating competing reaction pathways, many others suggest complex and nonintuitive mechanisms of compensating for the removed functionalities. Finally, the OptKnock procedure, by coupling biomass formation with chemical production, hints at a growth selection/adaptation system for indirectly evolving overproducing mutants.


Assuntos
Algoritmos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Melhoramento Genético/métodos , Modelos Biológicos , Software , Técnicas de Química Combinatória , Simulação por Computador , Escherichia coli/crescimento & desenvolvimento , Ácido Láctico/biossíntese , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Propilenoglicóis/metabolismo , Proteínas Recombinantes/metabolismo , Ácido Succínico/metabolismo
8.
Biotechnol Bioeng ; 84(7): 887-99, 2003 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-14708128

RESUMO

In this study, we modify and extend the bilevel optimization framework OptKnock for identifying gene knockout strategies in the Escherichia coli metabolic network, leading to the overproduction of representative amino acids and key precursors for all five families. These strategies span not only the central metabolic network genes but also the amino acid biosynthetic and degradation pathways. In addition to gene deletions, the transport rates of carbon dioxide, ammonia, and oxygen, as well as the secretion pathways for key metabolites, are introduced as optimization variables in the framework. Computational results demonstrate the importance of manipulating energy-producing/consuming pathways, controlling the uptake of nitrogen and oxygen, and blocking the secretion pathways of key competing metabolites. The identified pathway modifications include not only straightforward elimination of competing reactions but also a number of nonintuitive knockouts quite distant from the amino acid-producing pathways. Specifically, OptKnock suggests three reactions (i.e., pyruvate kinase, phosphotransacetylase, and ATPase) for deletion, in addition to the straightforward elimination of 2-ketoglutarate dehydrogenase, to generate a glutamate-overproducing mutant. Similarly, phosphofructokinase and ATPase are identified as promising knockout targets to complement the removal of pyruvate formate lyase and pyruvate dehydrogenase for enhancing the yield of alanine. Although OptKnock in its present form does not consider regulatory constraints, it does provide useful suggestions largely in agreement with existing practices and, more importantly, introduces a framework for incorporating additional modeling refinements as they become available.


Assuntos
Algoritmos , Aminoácidos/biossíntese , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Biológicos , Engenharia de Proteínas/métodos , Aminoácidos/genética , Técnicas de Química Combinatória/métodos , Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA