Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(6): 3640-3645, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294831

RESUMO

We report the discovery of a novel form of Ruddlesden-Popper (RP) nickelate that stands as the first example of long-range, coherent polymorphism in this class of inorganic solids. Rather than the well-known, uniform stacking of perovskite blocks ubiquitously found in RP phases, this newly discovered polymorph of the bilayer RP phase La3Ni2O7 adopts a novel stacking sequence in which single-layer and trilayer blocks of NiO6 octahedra alternate in a "1313" sequence. Crystals of this new polymorph are described in space group Cmmm, although we note evidence for a competing Imam variant. Transport measurements at ambient pressure reveal metallic character with evidence of a charge density wave transition with an onset at T ≈ 134 K. The discovery of such polymorphism could reverberate to the expansive range of science and applications that rely on RP materials, particularly the recently reported signatures of superconductivity in bilayer La3Ni2O7 with Tc as high as 80 K above 14 GPa.

2.
Nano Lett ; 22(19): 7804-7810, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36129969

RESUMO

The physics of phase transitions in two-dimensional (2D) systems underpins research in diverse fields including statistical mechanics, nanomagnetism, and soft condensed matter. However, many aspects of 2D phase transitions are still not well understood, including the effects of interparticle potential, polydispersity, and particle shape. Magnetic skyrmions are chiral spin-structure quasi-particles that form two-dimensional lattices. Here, we show, by real-space imaging using in situ cryo-Lorentz transmission electron microscopy coupled with machine learning image analysis, the ordering behavior of Néel skyrmion lattices in van der Waals Fe3GeTe2. We demonstrate a distinct change in the skyrmion size distribution during field-cooling, which leads to a loss of lattice order and an evolution of the skyrmion liquid phase. Remarkably, the lattice order is restored during field heating and demonstrates a thermal hysteresis. This behavior is explained by the skyrmion energy landscape and demonstrates the potential to control the lattice order in 2D phase transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...