Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20172668

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019, is a respiratory virus primarily transmitted from person to person through inhalation of droplets or aerosols, laden with viral particles. However, as some studies have shown, virions can remain infectious for up to 72 hours on surfaces, which can lead to transmission through contact. For this reason, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end (E2E) study showed that the effective combination of monitoring SARS-CoV-2 on surfaces include using an Isohelix swab as a collection tool, DNA/RNA Shield as a preservative, an automated system for RNA extraction, and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) as the detection assay. Using this E2E approach, this study showed that, in some cases, SARS-CoV-2 viral standards were still recovered from surfaces as detected by RT-qPCR for as long as eight days even after bleach treatment. Additionally, debris associated with specific built environment surfaces appeared to negatively impact the recovery of RNA, with Amerstat inhibition as high as 90% when challenged with an inactivated viral control. Overall, it was determined that this E2E protocol required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from test surfaces. When this method was employed to evaluate 368 samples collected from various built environmental surfaces, all samples tested negative, indicating that the surfaces were either void of virus or below the detection limit of the assay. ImportanceThe ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus responsible for coronavirus disease 2019; COVID-19) pandemic has led to a global slow down with far reaching financial and social impacts. The SARS-CoV-2 respiratory virus is primarily transmitted from person to person through inhalation of infected droplets or aerosols. However, some studies have shown virions can remain infectious on surfaces for days, and can lead to human infection from contact with infected surfaces. Thus, a comprehensive study was conducted to determine the efficiency of protocols to recover SARS-CoV-2 from surfaces in built environments. This end-to-end study showed that the effective combination of monitoring SARS-CoV-2 on surfaces required a minimum of 1,000 viral particles per 25 cm2 to successfully detect virus from surfaces. This comprehensive study can provide valuable information regarding surface monitoring of various materials as well as the capacity to retain viral RNA and allow for effective disinfection.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-001008

RESUMO

The ongoing COVID-19 pandemic has caused an unprecedented need for rapid diagnostic testing. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) recommend a standard assay that includes an RNA extraction step from a nasopharyngeal (NP) swab followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the purified SARS-CoV-2 RNA. The current global shortage of RNA extraction kits has caused a severe bottleneck to COVID-19 testing. We hypothesized that SARS-CoV-2 RNA could be detected from NP samples via a direct RT-qPCR assay that omits the RNA extraction step altogether, and tested this hypothesis on a series of blinded clinical samples. The direct RT-qPCR approach correctly identified 92% of NP samples (n = 155) demonstrated to be positive for SARS-CoV-2 RNA by traditional clinical diagnostic RT-qPCR that included an RNA extraction. Thus, direct RT-qPCR could be a front-line approach to identify the substantial majority of COVID-19 patients, reserving a repeat test with RNA extraction for those individuals with high suspicion of infection but an initial negative result. This strategy would drastically ease supply chokepoints of COVID-19 testing and should be applicable throughout the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...