Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Neurotoxicology ; 53: 74-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769196

RESUMO

Age-related disturbances in astrocytic mitochondrial function are linked to loss of neuroprotection and decrements in neurological function. The immortalized rat neocortical astrocyte-derived cell line, DI-TNC1, provides a convenient model for the examination of cellular aging processes that are difficult to study in primary cell isolates from aged brain. Successive passages in culture may serve as a surrogate of aging in which time-dependent adaptation to culture conditions may result in altered responses to xenobiotic challenge. To investigate the hypothesis that astrocytic mitochondrial homeostatic function is decreased with time in culture, low passage DI-TNC1 astrocytes (LP; #2-8) and high passage DI-TNC1 astrocytes (HP; #17-28) were exposed to the mitochondrial neurotoxicant 1,3-dinitrobenzene (DNB). Cells were exposed in either monoculture or in co-culture with primary cortical neurons. Astrocyte mitochondrial membrane potential, morphology, ATP production and proliferation were monitored in monoculture, and the ability of DI-TNC1 cells to buffer K(+)-induced neuronal depolarization was examined in co-cultures. In HP DI-TNC1 cells, DNB exposure decreased proliferation, reduced mitochondrial membrane potential and significantly decreased mitochondrial form factor. Low passage DI-TNC1 cells effectively attenuated K(+)-induced neuronal depolarization in the presence of DNB whereas HP counterparts were unable to buffer K(+) in DNB challenge. Following DNB challenge, LP DI-TNC1 cells exhibited greater viability in co-culture than HP. The data provide compelling evidence that there is an abrupt phenotypic change in DI-TNC1 cells between passage #9-16 that significantly diminishes the ability of DI-TNC1 cells to compensate for neurotoxic challenge and provide neuroprotective spatial buffering. Whether or not these functional changes have an in vivo analog in aging brain remains to be determined.


Assuntos
Envelhecimento/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Dinitrobenzenos/toxicidade , Neurotoxinas/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/ultraestrutura , Bromodesoxiuridina/metabolismo , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Modelos Lineares , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley
3.
Environ Sci Nano ; 3(6): 1510-1520, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28357114

RESUMO

Due to their widespread incorporation into a range of biomedical and consumer products, the ingestion of silver nanoparticles (AgNPs) is of considerable concern to human health. However, the extent to which AgNPs will be modified within the gastric compartment of the gastrointestinal tract is still poorly understood. Studies have yet to fully evaluate the extent of physicochemical changes to AgNPs in the presence of biological macromolecules, such as pepsin, the most abundant protein in the stomach, or the influence of AgNPs on protein structure and activity. Herein, AgNPs of two different sizes and surface coatings (20 and 110 nm, citrate or polyvinylpyrrolidone) were added to simulated gastric fluid (SGF) with or without porcine pepsin at three pHs (2.0, 3.5, and 5.0), representing a range of values between preprandial (fasted) and postprandial (fed) conditions. Rapid increases in diameter were observed for all AgNPs, with a greater increase in diameter in the presence of pepsin, indicating that pepsin facilitated AgNPs aggregation. AgNPs interaction with pepsin only minimally reduced the protein's proteolytic functioning capability, with the greatest inhibitory effect caused by smaller (20 nm) particles of both coatings. No changes in pepsin secondary structural elements were observed for the different AgNPs, even at high particle concentrations. This research highlights the size-dependent kinetics of nanoparticle aggregation or dissolution from interaction with biological elements such as proteins in the gastrointestinal tract. Further, these results demonstrate that, in addition to mass, knowing the chemical form and aggregation state of nanoparticles is critical when evaluating toxicological effects from nanoparticle exposure in the body.

4.
Nanotoxicology ; 10(3): 352-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26305411

RESUMO

Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity.


Assuntos
Fezes/química , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Prata/farmacocinética , Prata/toxicidade , Acetatos/farmacocinética , Acetatos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Relação Dose-Resposta a Droga , Cinética , Masculino , Nanopartículas Metálicas/química , Camundongos , Modelos Animais , Tamanho do Órgão/efeitos dos fármacos , Polivinil/química , Polivinil/toxicidade , Pirrolidinas/química , Pirrolidinas/toxicidade , Prata/análise , Prata/química , Compostos de Prata/farmacocinética , Compostos de Prata/toxicidade , Distribuição Tecidual
5.
Nanotoxicology ; 10(5): 513-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26525505

RESUMO

Silver nanoparticles (AgNPs) have been used as antimicrobials in a number of applications, including topical wound dressings and coatings for consumer products and biomedical devices. Ingestion is a relevant route of exposure for AgNPs, whether occurring unintentionally via Ag dissolution from consumer products, or intentionally from dietary supplements. AgNP have also been proposed as substitutes for antibiotics in animal feeds. While oral antibiotics are known to have significant effects on gut bacteria, the antimicrobial effects of ingested AgNPs on the indigenous microbiome or on gut pathogens are unknown. In addition, AgNP size and coating have been postulated as significantly influential towards their biochemical properties and the influence of these properties on antimicrobial efficacy is unknown. We evaluated murine gut microbial communities using culture-independent sequencing of 16S rRNA gene fragments following 28 days of repeated oral dosing of well-characterized AgNPs of two different sizes (20 and 110 nm) and coatings (PVP and Citrate). Irrespective of size or coating, oral administration of AgNPs at 10 mg/kg body weight/day did not alter the membership, structure or diversity of the murine gut microbiome. Thus, in contrast to effects of broad-spectrum antibiotics, repeat dosing of AgNP, at doses equivalent to 2000 times the oral reference dose and 100-400 times the effective in vitro anti-microbial concentration, does not affect the indigenous murine gut microbiome.


Assuntos
Anti-Infecciosos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Administração Oral , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Ácido Cítrico/química , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal/genética , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Povidona/química , RNA Ribossômico 16S/genética , Prata/administração & dosagem , Prata/química , Testes de Toxicidade
6.
Cortex ; 74: 449-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26493934

RESUMO

Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S. and elsewhere have consistently concluded that approximately 25-32% of this population suffers from a disorder characterized by symptoms that vary somewhat among individuals and include fatigue, headaches, cognitive dysfunction, musculoskeletal pain, and respiratory, gastrointestinal and dermatologic complaints. Gulf War illness (GWI) is the term used to describe this disorder. In addition, brain cancer occurs at increased rates in subgroups of GW veterans, as do neuropsychological and brain imaging abnormalities. Chemical exposures have become the focus of etiologic GWI research because nervous system symptoms are prominent and many neurotoxicants were present in theater, including organophosphates (OPs), carbamates, and other pesticides; sarin/cyclosarin nerve agents, and pyridostigmine bromide (PB) medications used as prophylaxis against chemical warfare attacks. Psychiatric etiologies have been ruled out. This paper reviews the recent literature on the health of 1991 GW veterans, focusing particularly on the central nervous system and on effects of toxicant exposures. In addition, it emphasizes research published since 2008, following on an exhaustive review that was published in that year that summarizes the prior literature (RACGWI, 2008). We conclude that exposure to pesticides and/or to PB are causally associated with GWI and the neurological dysfunction in GW veterans. Exposure to sarin and cyclosarin and to oil well fire emissions are also associated with neurologically based health effects, though their contribution to development of the disorder known as GWI is less clear. Gene-environment interactions are likely to have contributed to development of GWI in deployed veterans. The health consequences of chemical exposures in the GW and other conflicts have been called "toxic wounds" by veterans. This type of injury requires further study and concentrated treatment research efforts that may also benefit other occupational groups with similar exposure-related illnesses.


Assuntos
Neurotoxinas/intoxicação , Exposição Ocupacional/efeitos adversos , Síndrome do Golfo Pérsico/induzido quimicamente , Neoplasias Encefálicas/induzido quimicamente , Transtornos Cognitivos/induzido quimicamente , Fadiga/induzido quimicamente , Guerra do Golfo , Humanos , Veteranos
7.
Handb Clin Neurol ; 131: 61-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26563783

RESUMO

The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems.


Assuntos
Sistema Nervoso Central/patologia , Síndromes Neurotóxicas/patologia , Animais , Barreira Hematoencefálica/fisiopatologia , Sistema Nervoso Central/fisiopatologia , Suscetibilidade a Doenças , Humanos , Neuroglia/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
8.
Toxicol Sci ; 144(1): 7-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25740792

RESUMO

In recent decades, there has been a significant expansion in our understanding of the role of astrocytes in neuroprotection, including spatial buffering of extracellular ions, secretion of metabolic coenzymes, and synaptic regulation. Astrocytic neuroprotective functions require energy, and therefore require a network of functional mitochondria. Disturbances to astrocytic mitochondrial homeostasis and their ability to produce ATP can negatively impact neural function. Perturbations in astrocyte mitochondrial function may accrue as the result of physiological aging processes or as a consequence of neurotoxicant exposure. Hydrophobic environmental neurotoxicants, such as 1,3-dinitrobenzene and α-chlorohydrin, cause regionally specific spongiform lesions mimicking energy deprivation syndromes. Astrocyte involvement includes mitochondrial damage that either precedes or is accompanied by neuronal damage. Similarly, environmental neurotoxicants that are implicated in the etiology of age-related neurodegenerative conditions cause regionally specific damage in the brain. Based on the regioselective nature of age-related neurodegenerative lesions, chemically induced models of regioselective lesions targeting astrocyte mitochondria can provide insight into age-related susceptibilities in astrocyte mitochondria. Most of the available research to date focuses on neuronal damage in cases of age-related neurodegeneration; however, there is a body of evidence that supports a central mechanistic role for astrocyte mitochondria in the expression of neural injury. Regional susceptibility to neuronal damage induced by aging by exposure to neurotoxicants may be a reflection of highly variable regional energy requirements. This review identifies region-specific vulnerabilities in astrocyte mitochondria in examples of exposure to neurotoxicants and in age-related neurodegeneration.


Assuntos
Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Mitocôndrias/efeitos dos fármacos , Degeneração Neural , Síndromes Neurotóxicas/etiologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Medição de Risco , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Nervo Vestibulococlear/efeitos dos fármacos , Nervo Vestibulococlear/metabolismo , Nervo Vestibulococlear/patologia
9.
Toxicol Sci ; 145(1): 48-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25716674

RESUMO

Regions of the brain with high energy requirements are especially sensitive to perturbations in mitochondrial function. Hence, neurotoxicant exposures that target mitochondria in regions of high energy demand have the potential to accelerate mitochondrial damage inherently occurring during the aging process. 1,3-Dinitrobenzene (DNB) is a model neurotoxicant that selectively targets mitochondria in brainstem nuclei innervated by the eighth cranial nerve. This study investigates the role of age in the regional susceptibility of brain mitochondria-related proteins (MRPs) to oxidation following exposure to DNB. Male F344 rats (1 month old [young], 3 months old [adult], 18 months old [aged]) were exposed to 10 mg/kg DNB prior to mitochondrial isolation and histopathology experiments. Using a high-throughput proteomic approach, 3 important region- and age-related increases in DNB-induced MRP oxidation were determined: (1) brainstem mitochondria are ×3 more sensitive to DNB-induced oxidation than cortical mitochondria; (2) oxidation of brainstem MRPs is significantly higher than in cortical counterparts; and (3) MRPs from the brainstems of older rats are significantly more oxidized than those from young or adult rats. Furthermore, lower levels of DNB cause signs of intoxication (ataxia, chromodacryorrhea) and vacuolation of the susceptible neuropil in aged animals, while neither is observed in DNB-exposed young rats. Additionally, methemoglobin levels increase significantly in DNB-exposed adult and aged animals, but not young DNB-exposed animals. This suggests that oxidation of key MRPs observed in brainstem of aged animals is necessary for DNB-induced signs of intoxication and lesion formation. These results provide compelling evidence that environmental chemicals such as DNB may aid in the acceleration of injury to specific brain regions by inducing oxidation of sensitive mitochondrial proteins.


Assuntos
Fatores Etários , Encéfalo/efeitos dos fármacos , Dinitrobenzenos/farmacologia , Proteínas Mitocondriais/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Oxirredução , Ratos , Ratos Endogâmicos F344
10.
Adv Nutr ; 6(1): 124-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25593151

RESUMO

Fortification is the process of adding nutrients or non-nutrient bioactive components to edible products (e.g., food, food constituents, or supplements). Fortification can be used to correct or prevent widespread nutrient intake shortfalls and associated deficiencies, to balance the total nutrient profile of a diet, to restore nutrients lost in processing, or to appeal to consumers looking to supplement their diet. Food fortification could be considered as a public health strategy to enhance nutrient intakes of a population. Over the past century, fortification has been effective at reducing the risk of nutrient deficiency diseases such as beriberi, goiter, pellagra, and rickets. However, the world today is very different from when fortification emerged in the 1920s. Although early fortification programs were designed to eliminate deficiency diseases, current fortification programs are based on low dietary intakes rather than a diagnosable condition. Moving forward, we must be diligent in our approach to achieving effective and responsible fortification practices and policies, including responsible marketing of fortified products. Fortification must be applied prudently, its effects monitored diligently, and the public informed effectively about its benefits through consumer education efforts. Clear lines of authority for establishing fortification guidelines should be developed and should take into account changing population demographics, changes in the food supply, and advances in technology. This article is a summary of a symposium presented at the ASN Scientific Sessions and Annual Meeting at Experimental Biology 2014 on current issues involving fortification focusing primarily on the United States and Canada and recommendations for the development of responsible fortification practices to ensure their safety and effectiveness.


Assuntos
Deficiências Nutricionais/prevenção & controle , Dieta , Alimentos Fortificados , Saúde , Micronutrientes/uso terapêutico , Canadá , Humanos , Micronutrientes/deficiência , Estados Unidos
11.
Toxicol In Vitro ; 29(3): 564-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25553915

RESUMO

With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB. Morphometric analysis of the neuronal area revealed that m-DNB exposure produced no significant change in mean neuronal cell area in "full-contact" co-cultures, whereas a significant decrease was observed for neuron monocultures. Neurite elaboration into a neurite exclusive compartment in a compartmentalized microfluidic device, for both monocultures (no astrocytes) and "restricted" co-cultures (astrocytes touching neurites), decreased with exposure to increasing concentrations of m-DNB, but the average neurite area was higher in co-cultures. By using co-culture systems that more closely approach biological and architectural complexities, and the directionality of exposure found in the brain, this study provides a methodological foundation for unraveling the role of physical contact between astrocytes and neurons in mitigating the toxic effects of chemicals such as m-DNB.


Assuntos
Astrócitos/efeitos dos fármacos , Córtex Cerebral/citologia , Dinitrobenzenos/toxicidade , Degeneração Neural/induzido quimicamente , Neurônios/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Córtex Cerebral/embriologia , Técnicas de Cocultura , Imuno-Histoquímica , Técnicas Analíticas Microfluídicas , Degeneração Neural/patologia , Neuritos/efeitos dos fármacos , Ratos
12.
J Phys Chem C Nanomater Interfaces ; 119(35): 20632-20641, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373899

RESUMO

As silver nanoparticles (AgNPs) are used in a wide array of commercial products and can enter the human body through oral exposure, it is important to understand the fundamental physical and chemical processes leading to changes in nanoparticle size under the conditions of the gastrointestinal (GI) tract. Rapid AgNP growth was observed using nanoparticle tracking analysis with 30 s resolution over a period of 17 min in simulated gastric fluid (SGF) to explore rapid kinetics as a function of pH (SGF at pH 2, 3.5, 4.5 and 5), size (20 and 110 nm AgNPs), and nanoparticle coating (citrate and PVP). Growth was observed for 20 nm AgNP at each pH, decreasing in rate with increasing pH, with the kinetics shifting from second-order to first-order. The 110 nm AgNP showed growth at ≤3.5 pH, with no growth observed at higher pH. This behavior can be explained by the generation of Ag+ in acidic environments, which precipitates with Cl-, leading to particle growth and facilitating particle aggregation by decreasing their electrostatic repulsion in solution. These results highlight the need to further understand the importance of initial size, physicochemical properties, and kinetics of AgNPs after ingestion to assess potential toxicity.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25215753

RESUMO

Cristae, folded subcompartments of the inner mitochondrial membrane (IMM), have complex and dynamic morphologies. Since cristae are the major site of adenosine triphosphate synthesis, morphological changes of cristae have been studied in relation to functional states of mitochondria. In this sense, investigating the functional and structural significance of cristae may be critical for understanding progressive mitochondrial dysfunction. However, the detailed mechanisms of the formation and regulation of these cristae structures have not been fully elucidated. Among the hypotheses concerning the regulation of cristae morphologies, we exclusively investigate the effects of the local pH gradient on the cristae morphologies by using a numerical model. An area-difference induced curvature of the membrane is modeled as a function of local pH. This curvature is then applied to the finite element model of a closed lipid bilayer in order to find the energetically favorable membrane configuration. From this study, we substantiate the hypothesis that a tubular crista structure can be formed and regulated by the local pH gradient. Through the simulations with various initial conditions, we further demonstrate that the diameter of a crista is mainly determined by the local pH gradient, and the energetically favorable direction of crista growth is perpendicular to the longitudinal axis of a mitochondrion. Finally, the simulation results at the mitochondrial scale suggest that the cristae membrane may have a lower local pH value and/or a higher cardiolipin composition than the other parts of the IMM.


Assuntos
Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Simulação por Computador , Análise de Elementos Finitos , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/metabolismo , Modelos Biológicos
14.
J Biomed Mater Res A ; 102(5): 1361-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23733484

RESUMO

We have adapted our existing compression-induced fracture technology to cell culture studies by generating linear patterns on a complex cell culture well structure rather than on simple solid constructs. We present a simple method to create one-dimensional (1D), submicron, and linear patterns of extracellular matrix on a multilayer silicone material. We identified critical design parameters necessary to optimize compression-induced fracture patterning on the wells, and applied stresses using compression Hoffman clamps. Finite-element analyses show that the incorporation of the well improves stress homogeneity (stress variation = 25%), and, thus, crack uniformity over the patterned region. Notably, a shallow well with a thick base (vs. deeper wells with thinner bases) reduces out-of-plane deflections by greater than a sixth in the cell culture region, improving clarity for optical imaging. The comparison of cellular and nuclear shape indices of a neuroblast line cultured on patterned 1D lines and unpatterned 2D surfaces reveals significant differences in cellular morphology, which could impact many cellular functions. Because 1D cell cultures recapitulate many important phenotypical traits of 3D cell cultures, our culture system offers a simple means to further study the relationship between 1D and 3D cell culture environments, without demanding expensive engineering techniques and expertise.


Assuntos
Células/efeitos dos fármacos , Força Compressiva , Silicones/farmacologia , Estresse Mecânico , Animais , Forma do Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Ratos
15.
Nanoscale ; 5(21): 10327-44, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24056573

RESUMO

Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Peptídeos/metabolismo , Resinas Acrílicas/química , Sequência de Aminoácidos , Animais , Anticarcinógenos/farmacologia , Linhagem Celular Tumoral , Clorpromazina/farmacologia , Citocalasina D/farmacologia , Endocitose/efeitos dos fármacos , Genisteína/farmacologia , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/química , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/química , Lisossomos/metabolismo , Dados de Sequência Molecular , Peptídeos/química , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Propriedades de Superfície , Nucleolina
16.
Toxicol Sci ; 136(1): 4-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23958734

RESUMO

Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency.


Assuntos
Alternativas aos Testes com Animais/tendências , Mineração de Dados/tendências , Bases de Dados de Compostos Químicos/tendências , Bases de Dados de Produtos Farmacêuticos/tendências , Testes de Toxicidade/tendências , Animais , Relação Dose-Resposta a Droga , Previsões , Ensaios de Triagem em Larga Escala/tendências , Humanos , Modelos Animais , Modelos Biológicos , Testes de Mutagenicidade/tendências , Farmacocinética , Medição de Risco , Fatores de Risco
18.
Neurotoxicology ; 37: 74-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23623743

RESUMO

This comparative evaluation of neurotoxicants previously identified as models of chemical-induced mitochondrial dysfunction and energy deprivation demonstrated that subtoxic concentrations of 1,3-dinitrobenzene (1,3-DNB), 3-nitropropionic acid (3-NPA), and 3-chloropropanediol (3-CPD) each led to concentration-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with similar patterns of protein carbonylation. Subtoxic concentrations of each neurotoxicant were determined by measuring DI TNC1 cell viability using the MTS cell proliferation assay. Although exposure 1 µM, 10 µM, and 100 µM concentrations of each toxicant did not result in loss of cell viability after 48 h, exposure to each toxicant at these concentrations led to concentration-dependent loss of tetramethyl rhodamine methyl ester (TMRM) fluorescence over the same exposure period. Preincubation with the antioxidant, deferoxamine, was effective in preventing loss of TMRM flurorescence. Through the combined use of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and Oxyblot analysis, this study demonstrated that exposure to each toxicant resulted in the formation of distinctly similar patterns of protein carbonylation comprised of specific proteins identified with tandem MS/MS. Our results provide insight as to how exposure to different neurotoxicants that enhance oxidative stress may, in fact, lead to mitochondrial injury and subsequent toxicity through selective, yet shared, pathways of protein modification by oxidative carbonylation.


Assuntos
Dinitrobenzenos/toxicidade , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nitrocompostos/toxicidade , Propionatos/toxicidade , Carbonilação Proteica/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Animais , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
19.
Am J Public Health ; 103(3): 443-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23327258

RESUMO

Exposure to radon is the second leading cause of lung cancer, and the risk is significantly higher for smokers than for nonsmokers. More than 85% of radon-induced lung cancer deaths are among smokers. The most powerful approach for reducing the public health burden of radon is shaped by 2 overarching principles: public communication efforts that promote residential radon testing and remediation will be the most cost effective if they are primarily directed at current and former smokers; and focusing on smoking prevention and cessation is the optimal strategy for reducing radon-induced lung cancer in terms of both public health gains and economic efficiency. Tobacco control policy is the most promising route to the public health goals of radon control policy.


Assuntos
Exposição Ambiental/prevenção & controle , Política de Saúde , Neoplasias Pulmonares/etiologia , Radônio/efeitos adversos , Fumar/efeitos adversos , Análise Custo-Benefício , Exposição Ambiental/economia , Humanos , Neoplasias Pulmonares/prevenção & controle , Avaliação de Programas e Projetos de Saúde , Abandono do Hábito de Fumar
20.
Artigo em Inglês | MEDLINE | ID: mdl-24483502

RESUMO

The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The two-dimensional axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (Δp) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high Δp is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the mesoscale is a significant driver of mitochondrial function.


Assuntos
Fenômenos Biofísicos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Modelos Biológicos , Trifosfato de Adenosina/metabolismo , Eletroquímica , Distribuição de Poisson , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...