Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-190140

RESUMO

For yet unknown reasons, severely ill COVID-19 patients often become critically ill around the time of activation of adaptive immunity. Here, we show that anti-Spike IgG from serum of severely ill COVID-19 patients induces a hyper-inflammatory response by human macrophages, which subsequently breaks pulmonary endothelial barrier integrity and induces microvascular thrombosis. The excessive inflammatory capacity of this anti-Spike IgG is related to glycosylation changes in the IgG Fc tail. Moreover, the hyper-inflammatory response induced by anti-Spike IgG can be specifically counteracted in vitro by use of the active component of fostamatinib, an FDA- and EMA-approved therapeutic small molecule inhibitor of Syk. One sentence summaryAnti-Spike IgG promotes hyper-inflammation.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-088716

RESUMO

The rapid spread of SARS-CoV-2 has a significant impact on global health, travel and economy. Therefore, preventative and therapeutic measures are urgently needed. Here, we isolated neutralizing antibodies from convalescent COVID-19 patients using a SARS-CoV-2 stabilized prefusion spike protein. Several of these antibodies were able to potently inhibit live SARS-CoV-2 infection at concentrations as low as 0.007 {micro}g/mL, making them the most potent human SARS-CoV-2 antibodies described to date. Mapping studies revealed that the SARS-CoV-2 spike protein contained multiple distinct antigenic sites, including several receptor-binding domain (RBD) epitopes as well as previously undefined non-RBD epitopes. In addition to providing guidance for vaccine design, these mAbs are promising candidates for treatment and prevention of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...