Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3578, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678028

RESUMO

Delineation of microbial habitats within the soil matrix and characterization of their environments and metabolic processes are crucial to understand soil functioning, yet their experimental identification remains persistently limited. We combined single- and triple-energy X-ray computed microtomography with pore specific allocation of 13C labeled glucose and subsequent stable isotope probing to demonstrate how long-term disparities in vegetation history modify spatial distribution patterns of soil pore and particulate organic matter drivers of microbial habitats, and to probe bacterial communities populating such habitats. Here we show striking differences between large (30-150 µm Ø) and small (4-10 µm Ø) soil pores in (i) microbial diversity, composition, and life-strategies, (ii) responses to added substrate, (iii) metabolic pathways, and (iv) the processing and fate of labile C. We propose a microbial habitat classification concept based on biogeochemical mechanisms and localization of soil processes and also suggests interventions to mitigate the environmental consequences of agricultural management.


Assuntos
Bactérias , Ecossistema , Microbiota , Microbiologia do Solo , Solo , Solo/química , Microbiota/fisiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Microtomografia por Raio-X , Isótopos de Carbono/metabolismo , Porosidade , Carbono/metabolismo , Biodiversidade , Glucose/metabolismo
2.
Bioscience ; 64(5): 404-415, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955069

RESUMO

A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers-especially those with large farms-appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant.

3.
Glob Chang Biol ; 19(8): 2478-89, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23553929

RESUMO

Around 4.4 million ha of land in USDA Conservation Reserve Program (CRP) contracts will expire between 2013 and 2018 and some will likely return to crop production. No-till (NT) management offers the potential to reduce the global warming costs of CO2 , CH4 , and N2 O emissions during CRP conversion, but to date there have been no CRP conversion tillage comparisons. In 2009, we converted portions of three 9-21 ha CRP fields in Michigan to conventional tillage (CT) or NT soybean production and reserved a fourth field for reference. Both CO2 and N2 O fluxes increased following herbicide application in all converted fields, but in the CT treatment substantial and immediate N2 O and CO2 fluxes occurred after tillage. For the initial 201-day conversion period, average daily N2 O fluxes (g N2 O-N ha(-1)  d(-1) ) were significantly different in the order: CT (47.5 ± 6.31, n = 6) â‰« NT (16.7 ± 2.45, n = 6) â‰« reference (2.51 ± 0.73, n = 4). Similarly, soil CO2 fluxes in CT were 1.2 times those in NT and 3.1 times those in the unconverted CRP reference field. All treatments were minor sinks for CH4 (-0.69 ± 0.42 to -1.86 ± 0.37 g CH4 -C ha(-1)  d(-1) ) with no significant differences among treatments. The positive global warming impact (GWI) of converted soybean fields under both CT (11.5 Mg CO2 e ha(-1) ) and NT (2.87 Mg CO2 e ha(-1) ) was in contrast to the negative GWI of the unconverted reference field (-3.5 Mg CO2 e ha(-1) ) with on-going greenhouse gas (GHG) mitigation. N2 O contributed 39.3% and 55.0% of the GWI under CT and NT systems with the remainder contributed by CO2 (60.7% and 45.0%, respectively). Including foregone mitigation, we conclude that NT management can reduce GHG costs by ~60% compared to CT during initial CRP conversion.


Assuntos
Agricultura/métodos , Dióxido de Carbono/metabolismo , Conservação dos Recursos Naturais/métodos , Efeito Estufa/prevenção & controle , Metano/metabolismo , Óxido Nitroso/metabolismo , Agricultura/economia , Produtos Agrícolas/crescimento & desenvolvimento , Efeito Estufa/economia , Michigan
4.
Oecologia ; 61(1): 99-104, 1984 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28311390

RESUMO

Nitrogen availability is a critical component of productivity in successional lowland rainforests, and nitrogen losses from a given system may largely depend on rates of nitrification in soils of the system. Two hypotheses were tested in a study of a 6-point secondary rainforest sere in the coastal lowlands of Costa Rica: that nitrification and N mineralization change in a directed fashion in lowland rainforest successions, and that nitrification is regulated by ammonium availability at all points along the sere. Nitrate and mineral N production were measured in short-term laboratory incubations of soils from different stages of secondary succession corresponding to 0, 3, 8, 16, 31 and 60 + years following disturbance. Results indicate that nitrification increases through the first 4 successional stages and then declines somewhat before leveling off. In soil from all sites, most of the N mineralized was nitrified, and added NH4Cl strikingly stimulated net nitrate production. Added NaH2PO4, CaCO3, and CaSO4 did not stimulate net nitrate production or did not result in a greater proportion of nitrate than in controls. These results suggest that nitrification and N mineralization may tend to increase through secondary rainforest succession and that ammonium availability along the sere regulates rates of nitrification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...