Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291816

RESUMO

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

2.
Br J Pharmacol ; 179(14): 3560-3575, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-32780479

RESUMO

BACKGROUND AND PURPOSE: Transient receptor potential melastatin 3 (TRPM3) is a non-selective cation channel that plays a pivotal role in the peripheral nervous system as a transducer of painful heat signals. Alternative splicing gives rise to several TRPM3 variants. The functional consequences of these splice isoforms are poorly understood. Here, the pharmacological properties of TRPM3 variants arising from alternative splicing in the pore-forming region were compared. EXPERIMENTAL APPROACH: Calcium microfluorimetry and patch clamp recordings were used to compare the properties of heterologously expressed TRPM3α1 (long pore variant) and TRPM3α2-α6 (short pore variants). Furthermore, site-directed mutagenesis was done to investigate the influence of the length of the pore loop on the channel function. KEY RESULTS: All short pore loop TRPM3α variants (TRPM3α2-α6) were activated by the neurosteroid pregnenolone sulphate (PS) and by nifedipine, whereas the long pore loop variant TRPM3α1 was insensitive to either compound. In contrast, TRPM3α1 was robustly activated by clotrimazole, a compound that does not directly activate the short pore variants but potentiates their responses to PS. Clotrimazole-activated TRPM3α1 currents were largely insensitive to established TRPM3α2 antagonists and were only partially inhibited upon activation of the µ opioid receptor. Finally, by creating a set of mutant channels with pore loops of intermediate length, we showed that the length of the pore loop dictates differential channel activation by PS and clotrimazole. CONCLUSION AND IMPLICATIONS: Alternative splicing in the pore-forming region of TRPM3 defines the channel's pharmacological properties, which depend critically on the length of the pore-forming loop. LINKED ARTICLES: This article is part of a themed issue on Structure Guided Pharmacology of Membrane Proteins (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.14/issuetoc.


Assuntos
Canais de Cátion TRPM , Processamento Alternativo , Cálcio/metabolismo , Clotrimazol , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPM/metabolismo
3.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884938

RESUMO

In pancreatic ß-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 ß-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 ß-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 ß-cells.


Assuntos
Caseína Quinase II/metabolismo , Células Secretoras de Insulina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Linhagem Celular , Células HEK293 , Humanos , Mutação , Naftiridinas/farmacologia , Fenazinas/farmacologia , Fosforilação , Pregnenolona/farmacologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/genética
4.
Sci Adv ; 7(41): eabg4074, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623921

RESUMO

Chemosensory cues detected in the nose need to be integrated with the hormonal status to trigger appropriate behaviors, but the neural circuits linking the olfactory and the endocrine system are insufficiently understood. Here, we characterize olfactory sensory neurons in the murine nose that respond to the pituitary hormone prolactin. Deletion of prolactin receptor in these cells results in impaired detection of social odors and blunts male preference in females. The prolactin-responsive olfactory sensory neurons exhibit a distinctive projection pattern to the brain that is similar across different individuals and express a limited subset of chemosensory receptors. Prolactin modulates the responses within these neurons to discrete chemosensory cues contained in male urine, providing a mechanism by which the hormonal status can be directly linked with distinct olfactory cues to generate appropriate behavioral responses.

5.
Diabetes ; 70(11): 2532-2544, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34426509

RESUMO

Voltage-gated Ca2+ (Cav) channels consist of a pore-forming Cavα1 subunit and auxiliary Cavα2-δ and Cavß subunits. In fibroblasts, Cavß3, independent of its role as a Cav subunit, reduces the sensitivity to low concentrations of inositol-1,4,5-trisphosphate (IP3). Similarly, Cavß3 could affect cytosolic calcium concentration ([Ca2 +]) in pancreatic ß-cells. In this study, we deleted the Cavß3-encoding gene Cacnb3 in insulin-secreting rat ß-(Ins-1) cells using CRISPR/Cas9. These cells were used as controls to investigate the role of Cavß3 on Ca2+ signaling, glucose-induced insulin secretion (GIIS), Cav channel activity, and gene expression in wild-type cells in which Cavß3 and the IP3 receptor were coimmunoprecipitated. Transcript and protein profiling revealed significantly increased levels of insulin transcription factor Mafa, CaMKIV, proprotein convertase subtilisin/kexin type-1, and nitric oxide synthase-1 in Cavß3-knockout cells. In the absence of Cavß3, Cav currents were not altered. In contrast, CREB activity, the amount of MAFA protein and GIIS, the extent of IP3-dependent Ca2+ release and the frequency of Ca2+ oscillations were increased. These processes were decreased by the Cavß3 protein in a concentration-dependent manner. Our study shows that Cavß3 interacts with the IP3 receptor in isolated ß-cells, controls IP3-dependent Ca2+-signaling independently of Cav channel functions, and thereby regulates insulin expression and its glucose-dependent release in a cell-autonomous manner.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Proteína de Ligação a CREB , Sistemas CRISPR-Cas , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Linhagem Celular Tumoral , Citosol/metabolismo , Regulação da Expressão Gênica , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Insulinoma/metabolismo , Ratos
6.
Cancers (Basel) ; 13(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918235

RESUMO

Nerve/glial antigen (NG)2 expression crucially determines the aggressiveness of glioblastoma multiforme (GBM). Recent evidence suggests that protein kinase CK2 regulates NG2 expression. Therefore, we investigated in the present study whether CK2 inhibition suppresses proliferation and migration of NG2-positive GBM cells. For this purpose, CK2 activity was suppressed in the NG2-positive cell lines A1207 and U87 by the pharmacological inhibitor CX-4945 and CRISPR/Cas9-mediated knockout of CK2α. As shown by quantitative real-time PCR, luciferase-reporter assays, flow cytometry and western blot, this significantly reduced NG2 gene and protein expression when compared to vehicle-treated and wild type controls. In addition, CK2 inhibition markedly reduced NG2-dependent A1207 and U87 cell proliferation and migration. The Cancer Genome Atlas (TCGA)-based data further revealed not only a high expression of both NG2 and CK2 in GBM but also a positive correlation between the mRNA expression of the two proteins. Finally, we verified a decreased NG2 expression after CX-4945 treatment in patient-derived GBM cells. These findings indicate that the inhibition of CK2 represents a promising approach to suppress the aggressive molecular signature of NG2-positive GBM cells. Therefore, CX-4945 may be a suitable drug for the future treatment of NG2-positive GBM.

7.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352987

RESUMO

Calcium-selective transient receptor potential Vanilloid 6 (TRPV6) channels are expressed in fetal labyrinth trophoblasts as part of the feto-maternal barrier, necessary for sufficient calcium supply, embryo growth, and bone development during pregnancy. Recently, we have shown a less- compact labyrinth morphology of Trpv6-deficient placentae, and reduced Ca2+ uptake of primary trophoblasts upon functional deletion of TRPV6. Trpv6-/- trophoblasts show a distinct calcium-dependent phenotype. Deep proteomic profiling of wt and Trpv6-/- primary trophoblasts using label-free quantitative mass spectrometry leads to the identification of 2778 proteins. Among those, a group of proteases, including high-temperature requirement A serine peptidase 1 (HTRA1) and different granzymes are more abundantly expressed in Trpv6-/- trophoblast lysates, whereas the extracellular matrix protein fibronectin and the fibronectin-domain-containing protein 3A (FND3A) were markedly reduced. Trpv6-/-placenta lysates contain a higher intrinsic proteolytic activity increasing fibronectin degradation. Our results show that the extracellular matrix formation of the placental labyrinth depends on TRPV6; its deletion in trophoblasts correlates with the increased expression of proteases controlling the extracellular matrix in the labyrinth during pregnancy.


Assuntos
Matriz Extracelular/metabolismo , Placenta/metabolismo , Canais de Cátion TRPV/metabolismo , Transporte Biológico , Biomarcadores , Cálcio/metabolismo , Movimento Celular/genética , Sobrevivência Celular/genética , Biologia Computacional , Feminino , Técnicas de Silenciamento de Genes , Humanos , Gravidez , Proteólise , Proteoma , Proteômica , Canais de Cátion TRPV/genética
8.
Cell Physiol Biochem ; 54(6): 1115-1131, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33166100

RESUMO

BACKGROUND/AIMS: The release of insulin in response to increased levels of glucose in the blood strongly depends on Ca2+ influx into pancreatic beta cells by the opening of voltage-gated Ca2+ channels. Transient Receptor Potential Melastatin 3 proteins build Ca2+ permeable, non-selective cation channels serving as pain sensors of noxious heat in the peripheral nervous system. TRPM3 channels are also strongly expressed in pancreatic beta cells that respond to the TRPM3 agonist pregnenolone sulfate with Ca2+ influx and increased insulin release. Therefore, we hypothesized that in beta cells TRPM3 channels may contribute to pregnenolone sulfate- as well as to glucose-induced insulin release. METHODS: We used INS-1 cells as a beta cell model in which we analysed the occurrence of TRPM3 isoformes by immunoprecipitation and western blotting and by cloning of RT-PCR amplified cDNA fragments. We applied pharmacological as well as CRISPR/Cas9-based strategies to analyse the interplay of TRPM3 and voltage-gated Ca2+ channels in imaging experiments (FMP, Fura-2) and electrophysiological recordings. In immunoassays, we examined the contribution of TRPM3 channels to pregnenolone sulfate- and glucose-induced insulin release. To confirm our findings, we generated beta cell-specific Trpm3-deficient mice and compared their glucose clearance with the wild type in glucose tolerance tests. RESULTS: TRPM3 channels triggered the activity of voltage-gated Ca2+ channels and both channels together contributed to insulin release after TRPM3 activation. Trpm3-deficient INS-1 cells lacked pregnenolone sulfate-induced Ca2+ signals just like the pregnenolone sulfate-induced insulin release. Both, glucose-induced Ca2+ signals and the glucose-induced insulin release were strongly reduced. Accordingly, Trpm3-deficient mice displayed an impaired decrease of the blood sugar concentration after intraperitoneal or oral administration of glucose. CONCLUSION: The present study suggests an important role for TRPM3 channels in the control of glucose-dependent insulin release.


Assuntos
Sinalização do Cálcio , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Mutantes , Ratos , Canais de Cátion TRPM/genética
9.
Proc Natl Acad Sci U S A ; 117(46): 29090-29100, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33122432

RESUMO

TRPM3 channels play important roles in the detection of noxious heat and in inflammatory thermal hyperalgesia. The activity of these ion channels in somatosensory neurons is tightly regulated by µ-opioid receptors through the signaling of Gßγ proteins, thereby reducing TRPM3-mediated pain. We show here that Gßγ directly binds to a domain of 10 amino acids in TRPM3 and solve a cocrystal structure of this domain together with Gßγ. Using these data and mutational analysis of full-length proteins, we pinpoint three amino acids in TRPM3 and their interacting partners in Gß1 that are individually necessary for TRPM3 inhibition by Gßγ. The 10-amino-acid Gßγ-interacting domain in TRPM3 is subject to alternative splicing. Its inclusion in or exclusion from TRPM3 channel proteins therefore provides a mechanism for switching on or off the inhibitory action that Gßγ proteins exert on TRPM3 channels.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/farmacologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/farmacologia , Canais de Cátion TRPM/química , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Modelos Moleculares , Mutação , Neurônios/metabolismo , Dor/metabolismo , Receptores Opioides/metabolismo , Canais de Cátion TRPM/genética
10.
Cell Calcium ; 92: 102302, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069057

RESUMO

TRPV6 is a calcium selective TRP channel and is expressed in many species. TRPV6 transcripts are abundantly expressed in few tissues but strangely channel properties are only accessible to electrophysiological recordings after overexpression whereas in native tissue functional channel currents seem not to be detectable. Another exceptional property of human and mouse TRPV6 proteins is that the initiation of translation starts from a non-canonical ACG triplet which is translated as methionine. This triplet is located 120 bp upstream of the first in-frame AUG codon of the human/mouse TRPV6 mRNA. In contrast, the TRPV6 gene of bats is initiated from an AUG triplet at the corresponding position of the human ACG. On the basis of these structural nucleotide differences between human and bats we studied the role of the absolute N-Terminus for the regulation of translation by developing chimera and mutants of human/bat TRPV6 channels. The human sequence which is located downstream of the initiation codon slows down ribosomal scanning in 3' direction. We suggest that the mechanism involves most likely the deceleration of ribosome scanning by stem-loop formation and the use of the common initiator tRNA, tRNAiMet, which is placed onto the inappropriate ACG codon resulting in low protein synthesis. The reduced translation efficiency is important to protect TRPV6 expressing cells from toxic calcium overload. The regulation of the TRPV6 translation in bats may be an adaptation to low calcium amounts present in the natural nutrition. In addition, we show that also the GFP protein can be controlled using the translational mechanism of human TRPV6.


Assuntos
Quirópteros/fisiologia , Ativação do Canal Iônico , Canais de Cátion TRPV/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cálcio/metabolismo , Células HEK293 , Humanos , Mutação/genética , Filogenia , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
11.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630015

RESUMO

The regulation of insulin biosynthesis and secretion in pancreatic ß-cells is essential for glucose homeostasis in humans. Previous findings point to the highly conserved, ubiquitously expressed serine/threonine kinase CK2 as having a negative regulatory impact on this regulation. In the cell culture model of rat pancreatic ß-cells INS-1, insulin secretion is enhanced after CK2 inhibition. This enhancement is preceded by a rise in the cytosolic Ca2+ concentration. Here, we identified the serine residues S2362 and S2364 of the voltage-dependent calcium channel CaV2.1 as targets of CK2 phosphorylation. Furthermore, co-immunoprecipitation experiments revealed that CaV2.1 binds to CK2 in vitro and in vivo. CaV2.1 knockdown experiments showed that the increase in the intracellular Ca2+ concentration, followed by an enhanced insulin secretion upon CK2 inhibition, is due to a Ca2+ influx through CaV2.1 channels. In summary, our results point to a modulating role of CK2 in the CaV2.1-mediated exocytosis of insulin.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Caseína Quinase II/metabolismo , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Ratos
12.
J Biol Chem ; 295(31): 10662-10676, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493775

RESUMO

Soluble oligomers of aggregated tau accompany the accumulation of insoluble amyloid fibrils, a histological hallmark of Alzheimer disease (AD) and two dozen related neurodegenerative diseases. Both oligomers and fibrils seed the spread of Tau pathology, and by virtue of their low molecular weight and relative solubility, oligomers may be particularly pernicious seeds. Here, we report the formation of in vitro tau oligomers formed by an ionic liquid (IL15). Using IL15-induced recombinant tau oligomers and a dot blot assay, we discovered a mAb (M204) that binds oligomeric tau, but not tau monomers or fibrils. M204 and an engineered single-chain variable fragment (scFv) inhibited seeding by IL15-induced tau oligomers and pathological extracts from donors with AD and chronic traumatic encephalopathy. This finding suggests that M204-scFv targets pathological structures that are formed by tau in neurodegenerative diseases. We found that M204-scFv itself partitions into oligomeric forms that inhibit seeding differently, and crystal structures of the M204-scFv monomer, dimer, and trimer revealed conformational differences that explain differences among these forms in binding and inhibition. The efficiency of M204-scFv antibodies to inhibit the seeding by brain tissue extracts from different donors with tauopathies varied among individuals, indicating the possible existence of distinct amyloid polymorphs. We propose that by binding to oligomers, which are hypothesized to be the earliest seeding-competent species, M204-scFv may have potential as an early-stage diagnostic for AD and tauopathies, and also could guide the development of promising therapeutic antibodies.


Assuntos
Doença de Alzheimer , Multimerização Proteica , Anticorpos de Cadeia Única/química , Proteínas tau/química , Cristalografia por Raios X , Humanos
13.
J Alzheimers Dis ; 73(1): 229-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31771065

RESUMO

This work provides new insight into the age-related basis of Alzheimer's disease (AD), the composition of intraneuronal amyloid (iAß), and the mechanism of an age-related increase in iAß in adult AD-model mouse neurons. A new end-specific antibody for Aß45 and another for aggregated forms of Aß provide new insight into the composition of iAß and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAß levels containing aggregates of Aß45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAß was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAß and rapidly increased following a brief metabolic stress with glutamate. AßPP-CTF, Aß45, and aggregated Aß colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAß by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aßs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAß processing may lead to application of countermeasures to prolong dementia-free health span.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Autofagossomos/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/farmacologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios/ultraestrutura , Tamanho da Partícula
14.
Elife ; 82019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31612856

RESUMO

Alzheimer's disease (AD) pathology is characterized by plaques of amyloid beta (Aß) and neurofibrillary tangles of tau. Aß aggregation is thought to occur at early stages of the disease, and ultimately gives way to the formation of tau tangles which track with cognitive decline in humans. Here, we report the crystal structure of an Aß core segment determined by MicroED and in it, note characteristics of both fibrillar and oligomeric structure. Using this structure, we designed peptide-based inhibitors that reduce Aß aggregation and toxicity of already-aggregated species. Unexpectedly, we also found that these inhibitors reduce the efficiency of Aß-mediated tau aggregation, and moreover reduce aggregation and self-seeding of tau fibrils. The ability of these inhibitors to interfere with both Aß and tau seeds suggests these fibrils share a common epitope, and supports the hypothesis that cross-seeding is one mechanism by which amyloid is linked to tau aggregation and could promote cognitive decline.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Cristalografia por Raios X , Humanos , Estrutura Molecular , Ligação Proteica , Conformação Proteica
15.
Cell Calcium ; 73: 40-52, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880196

RESUMO

TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Calmodulina/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Fotólise/efeitos dos fármacos , Canais de Cátion TRPM/genética
16.
Mol Neurodegener ; 13(1): 11, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490706

RESUMO

BACKGROUND: Besides the two main classical features of amyloid beta aggregation and tau-containing neurofibrillary tangle deposition, neuroinflammation plays an important yet unclear role in the pathophysiology of Alzheimer's disease (AD). Microglia are believed to be key mediators of neuroinflammation during AD and responsible for the regulation of brain homeostasis by balancing neurotoxicity and neuroprotective events. We have previously reported evidence that neuritic plaques are derived from dead neurons that have accumulated intraneuronal amyloid and further recruit Iba1-positive cells, which play a role in either neuronal demise or neuritic plaque maturation or both. METHODS: To study the impact of microglia on neuritic plaque development, we treated two-month-old 5XFAD mice with a selective colony stimulation factor 1 receptor (CSF1R) inhibitor, PLX3397, for a period of 3 months, resulting in a significant ablation of microglia. Directly after this treatment, we analyzed the amount of intraneuronal amyloid and neuritic plaques and performed behavioral studies including Y-maze, fear conditioning and elevated plus maze. RESULTS: We found that early long-term PLX3397 administration results in a dramatic reduction of both intraneuronal amyloid as well as neuritic plaque deposition. PLX3397 treated young 5XFAD mice also displayed a significant decrease of soluble fibrillar amyloid oligomers in brain lysates, a depletion of soluble pre-fibrillar oligomers in plasma and an improvement in cognitive function measured by fear conditioning tests. CONCLUSIONS: Our findings demonstrate that CSF1R signaling, either directly on neurons or mediated by microglia, is crucial for the accumulation of intraneuronal amyloid and formation of neuritic plaques, suggesting that these two events are serially linked in a causal pathway leading to neurodegeneration and neuritic plaque formation. CSF1R inhibitors represent potential preventative or therapeutic approach that target the very earliest stages of the formation of intraneuronal amyloid and neuritic plaques.


Assuntos
Doença de Alzheimer/patologia , Aminopiridinas/farmacologia , Encéfalo/patologia , Microglia/efeitos dos fármacos , Neurônios/patologia , Pirróis/farmacologia , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
17.
J Biol Chem ; 293(8): 2888-2902, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29282295

RESUMO

Amyloid-ß (Aß) and human islet amyloid polypeptide (hIAPP) aggregate to form amyloid fibrils that deposit in tissues and are associated with Alzheimer's disease (AD) and type II diabetes (T2D), respectively. Individuals with T2D have an increased risk of developing AD, and conversely, AD patients have an increased risk of developing T2D. Evidence suggests that this link between AD and T2D might originate from a structural similarity between aggregates of Aß and hIAPP. Using the cryoEM method microelectron diffraction, we determined the atomic structures of 11-residue segments from both Aß and hIAPP, termed Aß(24-34) WT and hIAPP(19-29) S20G, with 64% sequence similarity. We observed a high degree of structural similarity between their backbone atoms (0.96-Å root mean square deviation). Moreover, fibrils of these segments induced amyloid formation through self- and cross-seeding. Furthermore, inhibitors designed for one segment showed cross-efficacy for full-length Aß and hIAPP and reduced cytotoxicity of both proteins, although by apparently blocking different cytotoxic mechanisms. The similarity of the atomic structures of Aß(24-34) WT and hIAPP(19-29) S20G offers a molecular model for cross-seeding between Aß and hIAPP.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Emaranhados Neurofibrilares/metabolismo , Fragmentos de Peptídeos/metabolismo , Substituição de Aminoácidos , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Biologia Computacional , Cristalografia por Raios X , Desenho de Fármacos , Células HEK293 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Nootrópicos/química , Nootrópicos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Agregação Patológica de Proteínas/prevenção & controle , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
18.
Elife ; 62017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28826482

RESUMO

Opioids, agonists of µ-opioid receptors (µORs), are the strongest pain killers clinically available. Their action includes a strong central component, which also causes important adverse effects. However, µORs are also found on the peripheral endings of nociceptors and their activation there produces meaningful analgesia. The cellular mechanisms downstream of peripheral µORs are not well understood. Here, we show in neurons of murine dorsal root ganglia that pro-nociceptive TRPM3 channels, present in the peripheral parts of nociceptors, are strongly inhibited by µOR activation, much more than other TRP channels in the same compartment, like TRPV1 and TRPA1. Inhibition of TRPM3 channels occurs via a short signaling cascade involving Gßγ proteins, which form a complex with TRPM3. Accordingly, activation of peripheral µORs in vivo strongly attenuates TRPM3-dependent pain. Our data establish TRPM3 inhibition as important consequence of peripheral µOR activation indicating that pharmacologically antagonizing TRPM3 may be a useful analgesic strategy.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/farmacologia , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/farmacologia , Receptores Opioides mu/metabolismo , Canais de Cátion TRPM/efeitos dos fármacos , Analgésicos Opioides/agonistas , Animais , Escala de Avaliação Comportamental , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Nociceptores/fisiologia , Dor/metabolismo , Receptores Opioides/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/metabolismo
19.
Glia ; 65(9): 1535-1549, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28636132

RESUMO

Following brain injury astrocytes change into a reactive state, proliferate and grow into the site of lesion, a process called astrogliosis, initiated and regulated by changes in cytoplasmic Ca2+ . Transient receptor potential canonical (TRPC) channels may contribute to Ca2+ influx but their presence and possible function in astrocytes is not known. By RT-PCR and RNA sequencing we identified transcripts of Trpc1, Trpc2, Trpc3, and Trpc4 in FACS-sorted glutamate aspartate transporter (GLAST)-positive cultured mouse cortical astrocytes and subcloned full-length Trpc1 and Trpc3 cDNAs from these cells. Ca2+ entry in cortical astrocytes depended on TRPC3 and was increased in the absence of Trpc1. After co-expression of Trpc1 and Trpc3 in HEK-293 cells both proteins co-immunoprecipitate and form functional heteromeric channels, with TRPC1 reducing TRPC3 activity. In vitro, lack of Trpc3 reduced astrocyte proliferation and migration whereas the TRPC3 gain-of-function moonwalker mutation and Trpc1 deficiency increased astrocyte migration. In vivo, astrogliosis and cortex edema following stab wound injury were reduced in Trpc3-/- but increased in Trpc1-/- mice. In summary, our results show a decisive contribution of TRPC3 to astrocyte Ca2+ signaling, which is even augmented in the absence of Trpc1, in particular following brain injury. Targeted therapies to reduce TRPC3 channel activity in astrocytes might therefore be beneficial in traumatic brain injury.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Córtex Cerebral/lesões , Gliose/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Astrócitos/patologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Gliose/etiologia , Gliose/patologia , Células HEK293 , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Ferimentos Perfurantes/metabolismo , Ferimentos Perfurantes/patologia
20.
Cell Calcium ; 67: 156-165, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28416203

RESUMO

Transient receptor potential (TRP) channels are cation channels which participate in a wide variety of physiological processes in organisms ranging from fungi to humans. They fulfill roles in body homeostasis, are sensors for noxious chemicals and temperature in the mammalian somatosensory system and are activated by light stimulated phospholipase C activity in Drosophila or by hypertonicity in yeast. The transmembrane topology of TRP channels is similar to that of voltage-gated cation channels. TRP proteins assemble as tetramers with each subunit containing six transmembrane helices (S1-S6) and intracellular N- and C-termini. Here we focus on the emerging functions of the cytosolic S4-S5 linker on TRP channel gating. Most of this knowledge comes from pathogenic mutations within the S4-S5 linker that alter TRP channel activities. This knowledge has stimulated forward genetic approaches to identify additional residues around this region which are essential for channel gating and is supported, in part, by recent structures obtained for TRPV1, TRPV2, TRPV6, TRPA1, and TRPP2.


Assuntos
Canalopatias/genética , Ativação do Canal Iônico/genética , Mutação , Canais de Potencial de Receptor Transitório/química , Sequência de Aminoácidos , Animais , Canalopatias/classificação , Canalopatias/metabolismo , Canalopatias/patologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Expressão Gênica , Humanos , Cinética , Potenciais da Membrana/fisiologia , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...