Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(32): 9285-9294, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093010

RESUMO

The valence band of lead halide hybrid perovskites with a mixed I/Br composition is investigated using electronic structure calculations and complementarily probed with hard X-ray photoelectron spectroscopy. In the latter, we used high photon energies giving element sensitivity to the heavy lead and halide ions and we observe distinct trends in the valence band as a function of the I : Br ratio. Through electronic structure calculations, we show that the spectral trends with overall composition can be understood in terms of variations in the local environment of neighboring halide ions. From the computational model supported by the experimental evidence, a picture of the microheterogeneity in the valence band maximum emerges. The microheterogeneity in the valence band suggests that additional charge transport mechanisms might be active in lead mixed halide hybrid perovskites, which could be described in terms of percolation pathways.

3.
Inorg Chem ; 58(18): 12040-12052, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483638

RESUMO

Metal halide compounds with photovoltaic properties prepared from solution have received increased attention for utilization in solar cells. In this work, low-toxicity cesium bismuth iodides are synthesized from solution, and their photovoltaic and optical properties as well as electronic and crystal structures are investigated. The X-ray diffraction patterns reveal that a CsI/BiI3 precursor ratio of 1.5:1 can convert pure rhombohedral BiI3 to pure hexagonal Cs3Bi2I9, but any ratio intermediate of this stoichiometry and pure BiI3 yields a mixture containing the two crystalline phases Cs3Bi2I9 and BiI3, with their relative fraction depending on the CsI/BiI3 ratio. Solar cells from the series of compounds are characterized, showing the highest efficiency for the compounds with a mixture of the two structures. The energies of the valence band edge were estimated using hard and soft X-ray photoelectron spectroscopy for more bulk and surface electronic properties, respectively. On the basis of these measurements, together with UV-vis-near-IR spectrophotometry, measuring the band gap, and Kelvin probe measurements for estimating the work function, an approximate energy diagram has been compiled clarifying the relationship between the positions of the valence and conduction band edges and the Fermi level.

4.
ACS Nano ; 12(7): 7301-7311, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29953817

RESUMO

We report significant improvements in the optoelectronic properties of lead halide perovskites with the addition of monovalent ions with ionic radii close to Pb2+. We investigate the chemical distribution and electronic structure of solution processed CH3NH3PbI3 perovskite structures containing Na+, Cu+, and Ag+, which are lower valence metal ions than Pb2+ but have similar ionic radii. Synchrotron X-ray diffraction reveals a pronounced shift in the main perovskite peaks for the monovalent cation-based films, suggesting incorporation of these cations into the perovskite lattice as well as a preferential crystal growth in Ag+ containing perovskite structures. Furthermore, the synchrotron X-ray photoelectron measurements show a significant change in the valence band position for Cu- and Ag-doped films, although the perovskite bandgap remains the same, indicating a shift in the Fermi level position toward the middle of the bandgap. Such a shift infers that incorporation of these monovalent cations dedope the n-type perovskite films when formed without added cations. This dedoping effect leads to cleaner bandgaps as reflected by the lower energetic disorder in the monovalent cation-doped perovskite thin films as compared to pristine films. We also find that in contrast to Ag+ and Cu+, Na+ locates mainly at the grain boundaries and surfaces. Our theoretical calculations confirm the observed shifts in X-ray diffraction peaks and Fermi level as well as absence of intrabandgap states upon energetically favorable doping of perovskite lattice by the monovalent cations. We also model a significant change in the local structure, chemical bonding of metal-halide, and the electronic structure in the doped perovskites. In summary, our work highlights the local chemistry and influence of monovalent cation dopants on crystallization and the electronic structure in the doped perovskite thin films.

5.
Nature ; 555(7697): 497-501, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29565365

RESUMO

Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield-a quantity that must be maximized to obtain high efficiency-remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.

6.
Chemphyschem ; 19(9): 1041-1047, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29451358

RESUMO

Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.

7.
ACS Energy Lett ; 3(11): 2671-2678, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30701195

RESUMO

Halide perovskites passivated with potassium or rubidium show superior photovoltaic device performance compared to unpassivated samples. However, it is unclear which passivation route is more effective for film stability. Here, we directly compare the optoelectronic properties and stability of thin films when passivating triple-cation perovskite films with potassium or rubidium species. The optoelectronic and chemical studies reveal that the alloyed perovskites are tolerant toward higher loadings of potassium than rubidium. Whereas potassium complexes with bromide from the perovskite precursor solution to form thin surface passivation layers, rubidium additives favor the formation of phase-segregated micron-sized rubidium halide crystals. This tolerance to higher loadings of potassium allows us to achieve superior luminescent properties with potassium passivation. We also find that exposure to a humid atmosphere drives phase segregation and grain coalescence for all compositions, with the rubidium-passivated sample showing the highest sensitivity to nonperovskite phase formation. Our work highlights the benefits but also the limitations of these passivation approaches in maximizing both optoelectronic properties and the stability of perovskite films.

8.
ACS Appl Mater Interfaces ; 9(40): 34970-34978, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28925263

RESUMO

Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as photoinduced phase separation and ion migration. In this paper, we implement a new methodology combining visible laser illumination of a mixed-ion perovskite ((FAPbI3)0.85(MAPbBr3)0.15) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.

9.
ChemSusChem ; 10(11): 2480-2495, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28338295

RESUMO

A covalently linked organic dye-cobaloxime catalyst system based on mesoporous NiO is synthesized by a facile click reaction for mechanistic studies and application in a dye-sensitized solar fuel device. The system is systematically investigated by photoelectrochemical measurements, density functional theory, time-resolved fluorescence, transient absorption spectroscopy, and photoelectron spectroscopy. The results show that irradiation of the dye-catalyst on NiO leads to ultrafast hole injection into NiO from the excited dye, followed by a fast electron transfer process to reduce the catalyst. Moreover, the dye adopts different structures with different excited state energies, and excitation energy transfer occurs between neighboring molecules on the semiconductor surface. The photoelectrochemical experiments also show hydrogen production by this system. The axial chloride ligands of the catalyst are released during photocatalysis to create the active sites for proton reduction. A working mechanism of the dye-catalyst system on the photocathode is proposed on the basis of this study.


Assuntos
Corantes/química , Técnicas Eletroquímicas , Compostos Organometálicos/química , Energia Solar , Catálise , Eletrodos , Elétrons , Transferência de Energia , Níquel , Oxirredução
10.
J Am Chem Soc ; 138(32): 10331-43, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27437906

RESUMO

Lead halide perovskites have over the past few years attracted considerable interest as photo absorbers in PV applications with record efficiencies now reaching 22%. It has recently been found that not only the composition but also the precise stoichiometry is important for the device performance. Recent reports have, for example, demonstrated small amount of PbI2 in the perovskite films to be beneficial for the overall performance of both the standard perovskite, CH3NH3PbI3, as well as for the mixed perovskites (CH3NH3)x(CH(NH2)2)(1-x)PbBryI(3-y). In this work a broad range of characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photo electron spectroscopy (PES), transient absorption spectroscopy (TAS), UV-vis, electroluminescence (EL), photoluminescence (PL), and confocal PL mapping have been used to further understand the importance of remnant PbI2 in perovskite solar cells. Our best devices were over 18% efficient, and had in line with previous results a small amount of excess PbI2. For the PbI2-deficient samples, the photocurrent dropped, which could be attributed to accumulation of organic species at the grain boundaries, low charge carrier mobility, and decreased electron injection into the TiO2. The PbI2-deficient compositions did, however, also have advantages. The record Voc was as high as 1.20 V and was found in PbI2-deficient samples. This was correlated with high crystal quality, longer charge carrier lifetimes, and high PL yields and was rationalized as a consequence of the dynamics of the perovskite formation. We further found the ion migration to be obstructed in the PbI2-deficient samples, which decreased the JV hysteresis and increased the photostability. PbI2-deficient synthesis conditions can thus be used to deposit perovskites with excellent crystal quality but with the downside of grain boundaries enriched in organic species, which act as a barrier toward current transport. Exploring ways to tune the synthesis conditions to give the high crystal quality obtained under PbI2-poor condition while maintaining the favorable grain boundary characteristics obtained under PbI2-rich conditions would thus be a strategy toward more efficiency devices.

11.
Nat Commun ; 7: 11981, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306541

RESUMO

Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm(-2) (57 mA cm(-2) after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

12.
ChemSusChem ; 9(1): 97-108, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26692568

RESUMO

The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V).


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Compostos de Manganês/química , Níquel/química , Espectroscopia Fotoeletrônica , Sódio/química , Eletroquímica , Eletrodos , Oxirredução , Óxidos/química , Propriedades de Superfície
13.
Adv Mater ; 27(43): 6806-13, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26418187

RESUMO

Low-toxic bismuth-based perovskites are prepared for the possible replacement of lead perovskite in solar cells. The perovskites have a hexagonal crystalline phase and light absorption in the visible region. A power conversion efficiency of over 1% is obtained for a solar cell with Cs3 Bi2 I9 perovskite, and it is concluded that bismuth perovskites have very promising properties for further development in solar cells.

14.
Chem Commun (Camb) ; 51(37): 7883-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854858

RESUMO

A simple strategy to immobilize highly efficient ruthenium based molecular water-oxidation catalysts on the basal-plane pyrolytic graphite electrode (BPG) by polymerization has been demonstrated. The electrode 1@BPG has obtained a high initial turnover frequency (TOF) of 10.47 s(-1) at ∼700 mV overpotential, and a high turnover number (TON) up to 31600 in 1 h electrolysis.

15.
J Am Chem Soc ; 135(26): 9829-42, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23763546

RESUMO

Silicon is a very good candidate for the next generation of negative electrodes for Li-ion batteries, due to its high rechargeable capacity. An important issue for the implementation of silicon is the control of the chemical reactivity at the electrode/electrolyte interface upon cycling, especially when using nanometric silicon particles. In this work we observed improved performances of Li//Si cells by using the new salt lithium bis(fluorosulfonyl)imide (LiFSI) with respect to LiPF6. The interfacial chemistry upon long-term cycling was investigated by photoelectron spectroscopy (XPS or PES). A nondestructive depth resolved analysis was carried out by using both soft X-rays (100-800 eV) and hard X-rays (2000-7000 eV) from two different synchrotron facilities and in-house XPS (1486.6 eV). We show that LiFSI allows avoiding the fluorination process of the silicon particles surface upon long-term cycling, which is observed with the common salt LiPF6. As a result the composition in surface silicon phases is modified, and the favorable interactions between the binder and the active material surface are preserved. Moreover a reduction mechanism of the salt LiFSI at the surface of the electrode could be evidenced, and the reactivity of the salt toward reduction was investigated using ab initio calculations. The reduction products deposited at the surface of the electrode act as a passivation layer which prevents further reduction of the salt and preserves the electrochemical performances of the battery.


Assuntos
Complexos de Coordenação/química , Nanoestruturas/química , Silício/química , Eletrodos , Espectroscopia Fotoeletrônica , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...