Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(8): 107257, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520696

RESUMO

Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection.

2.
EBioMedicine ; 45: 303-313, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262714

RESUMO

BACKGROUND: The complement system is a central component of the innate immune system. Constitutive biosynthesis of complement proteins is essential for homeostasis. Dysregulation as a consequence of genetic or environmental cues can lead to inflammatory syndromes or increased susceptibility to infection. However, very little is known about steady state levels in children or its kinetics during infection. METHODS: With a newly developed multiplex mass spectrometry-based method we analyzed the levels of 32 complement proteins in healthy individuals and in a group of pediatric patients infected with bacterial or viral pathogens. FINDINGS: In plasma from young infants we found reduced levels of C4BP, ficolin-3, factor B, classical pathway components C1QA, C1QB, C1QC, C1R, and terminal pathway components C5, C8, C9, as compared to healthy adults; whereas the majority of complement regulating (inhibitory) proteins reach adult levels at very young age. Both viral and bacterial infections in children generally lead to a slight overall increase in complement levels, with some exceptions. The kinetics of complement levels during invasive bacterial infections only showed minor changes, except for a significant increase and decrease of CRP and clusterin, respectively. INTERPRETATION: The combination of lower levels of activating and higher levels of regulating complement proteins, would potentially raise the threshold of activation, which might lead to suppressed complement activation in the first phase of life. There is hardly any measurable complement consumption during bacterial or viral infection. Altogether, expression of the complement proteins appears surprisingly stable, which suggests that the system is continuously replenished. FUND: European Union's Horizon 2020, project PERFORM, grant agreement No. 668303.


Assuntos
Doenças Transmissíveis/imunologia , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/química , Inflamação/imunologia , Adolescente , Adulto , Proteína C-Reativa/genética , Proteína C-Reativa/imunologia , Criança , Pré-Escolar , Clusterina/genética , Clusterina/imunologia , Doenças Transmissíveis/genética , Ativação do Complemento/genética , Proteínas do Sistema Complemento/classificação , Proteínas do Sistema Complemento/isolamento & purificação , Feminino , Homeostase , Humanos , Lactente , Recém-Nascido , Inflamação/genética , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...