Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(3): ar12, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598819

RESUMO

The efficient delivery of lysosomes is essential for many cell functions, such as the degradation of unwanted intracellular components by autophagy and the killing and digestion of extracellular microbes within phagosomes. Using the amoeba Dictyostelium discoideum, we find that cells lacking Katnip (Katanin interacting protein) have a general defect in lysosomal delivery and although they make autophagosomes and phagosomes correctly, cells are then unable to digest them. Katnip is largely unstudied yet highly conserved across evolution. Previously studies found that Katnip mutations in animals cause defects in cilia structure. Here we show that Katnip plays a more general role in maintaining microtubule function. We find that loss of Katnip has no overall effect on microtubule dynamics or organization, but is important for the transport and degradation of endocytic cargos. Strikingly, Katnip mutants become highly sensitive to GFP-tubulin expression, which leads to microtubule tangles, defective anaphase extension, and slow cell growth. Our findings establish a general role for Katnip in regulating microtubule function, beyond the roles previously described in cilia. We speculate this is via a key function in microtubule repair, needed to maintain endosomal trafficking and lysosomal degradation.


Assuntos
Autofagossomos , Dictyostelium , Animais , Dictyostelium/metabolismo , Fagossomos/metabolismo , Lisossomos/metabolismo , Autofagia/genética , Microtúbulos
2.
Curr Biol ; 30(15): 2912-2926.e5, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32531280

RESUMO

Engulfment of extracellular material by phagocytosis or macropinocytosis depends on the ability of cells to generate specialized cup-shaped protrusions. To effectively capture and internalize their targets, these cups are organized into a ring or ruffle of actin-driven protrusion encircling a non-protrusive interior domain. These functional domains depend on the combined activities of multiple Ras and Rho family small GTPases, but how their activities are integrated and differentially regulated over space and time is unknown. Here, we show that the amoeba Dictyostelium discoideum coordinates Ras and Rac activity using the multidomain protein RGBARG (RCC1, RhoGEF, BAR, and RasGAP-containing protein). We find RGBARG uses a tripartite mechanism of Ras, Rac, and phospholipid interactions to localize at the protruding edge and interface with the interior of both macropinocytic and phagocytic cups. There, we propose RGBARG shapes the protrusion by expanding Rac activation at the rim while suppressing expansion of the active Ras interior domain. Consequently, cells lacking RGBARG form enlarged, flat interior domains unable to generate large macropinosomes. During phagocytosis, we find that disruption of RGBARG causes a geometry-specific defect in engulfing rod-shaped bacteria and ellipsoidal beads. This demonstrates the importance of coordinating small GTPase activities during engulfment of more complex shapes and thus the full physiological range of microbes, and how this is achieved in a model professional phagocyte.


Assuntos
Bactérias , Dictyostelium/citologia , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Fagocitose , Pinocitose , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Proteínas de Ciclo Celular , Dictyostelium/imunologia
3.
Autophagy ; 13(1): 24-40, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27715405

RESUMO

Autophagy is a fast-moving field with an enormous impact on human health and disease. Understanding the complexity of the mechanism and regulation of this process often benefits from the use of simple experimental models such as the social amoeba Dictyostelium discoideum. Since the publication of the first review describing the potential of D. discoideum in autophagy, significant advances have been made that demonstrate both the experimental advantages and interest in using this model. Since our previous review, research in D. discoideum has shed light on the mechanisms that regulate autophagosome formation and contributed significantly to the study of autophagy-related pathologies. Here, we review these advances, as well as the current techniques to monitor autophagy in D. discoideum. The comprehensive bioinformatics search of autophagic proteins that was a substantial part of the previous review has not been revisited here except for those aspects that challenged previous predictions such as the composition of the Atg1 complex. In recent years our understanding of, and ability to investigate, autophagy in D. discoideum has evolved significantly and will surely enable and accelerate future research using this model.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Dictyostelium/fisiologia , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Biologia Computacional , Regulação da Expressão Gênica , Doenças Genéticas Inatas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fagossomos/metabolismo , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...