Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
ACS Nano ; 18(19): 12117-12133, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38648373

RESUMO

Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.


Assuntos
Colite Ulcerativa , Proteínas de Membrana , Micelas , Nucleotidiltransferases , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
2.
Front Microbiol ; 15: 1384552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601944

RESUMO

Bacterial antibiotic persistence is a phenomenon where bacteria are exposed to an antibiotic and the majority of the population dies while a small subset enters a low metabolic, persistent, state and are able to survive. Once the antibiotic is removed the persistent population can resuscitate and continue growing. Several different molecular mechanisms and pathways have been implicated in this phenomenon. A common mechanism that may underly bacterial antibiotic persistence is perturbations in protein synthesis. To investigate this mechanism, we characterized four distinct metG mutants for their ability to increase antibiotic persistence. Two metG mutants encode changes near the catalytic site of MetRS and the other two mutants changes near the anticodon binding domain. Mutations in metG are of particular interest because MetRS is responsible for aminoacylation both initiator tRNAMet and elongator tRNAMet indicating that these mutants could impact translation initiation and/or translation elongation. We observed that all the metG mutants increased the level of antibiotic persistence as did reduced transcription levels of wild type metG. Although, the MetRS variants did not have an impact on MetRS activity itself, they did reduce translation rates. It was also observed that the MetRS variants affected the proofreading mechanism for homocysteine and that these mutants' growth is hypersensitive to homocysteine. Taken together with previous findings, our data indicate that both reductions in cellular Met-tRNAMet synthetic capacity and reduced proofreading of homocysteine by MetRS variants are positive determinants for bacterial antibiotic persistence.

3.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107993

RESUMO

The central dogma of molecular biology is a key concept for undergraduate students in the life sciences as it describes the flow of information in living systems from gene-to-gene product. However, despite often being covered in many introductory life science courses, students may still have misconceptions surrounding the central dogma even as they move on to advanced courses. Active learning strategies such as laboratory activities can be useful in addressing such misconceptions. In the laboratory exercise presented here, senior undergraduate students explore the intricacies of nonsense suppressor mutations to challenge their understanding of the central dogma. The students introduce a plasmid carrying a nonfunctional chromogenic protein gene due to a nonsense mutation in a codon encoding the chromophore to various nonsense suppressor strains of Escherichia coli. Students then observe distinct chromogenic phenotypes, depending on the suppressor strain. Students showed a moderate increase in understanding of the central dogma. While the central dogma remains a challenging concept, active learning strategies like the one presented here can help reduce conceptual errors.

4.
Microbiol Resour Announc ; 12(10): e0042423, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37732802

RESUMO

Avian pathogenic Escherichia coli found in the avian intestinal tract can cause systemic disease in birds and act as a foodborne zoonotic pathogen associated with human disease. Here, we report the complete genome sequence of E. coli strain H1998 isolated from a chicken with colisepticemia.

5.
Microorganisms ; 11(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37374982

RESUMO

Vaginal and rectal specimens were obtained from cycling, pregnant, and nursing rhesus monkeys to assess pregnancy-related changes in the commensal bacteria in their reproductive and intestinal tracts. Using 16S rRNA gene amplicon sequencing, significant differences were found only in the vagina at mid-gestation, not in the hindgut. To verify the apparent stability in gut bacterial composition at mid-gestation, the experiment was repeated with additional monkeys, and similar results were found with both 16S rRNA gene amplicon and metagenomic sequencing. A follow-up study investigated if bacterial changes in the hindgut might occur later in pregnancy. Gravid females were assessed closer to term and compared to nonpregnant females. By late pregnancy, significant differences in bacterial composition, including an increased abundance of 4 species of Lactobacillus and Bifidobacterium adolescentis, were detected, but without a shift in the overall community structure. Progesterone levels were assessed as a possible hormone mediator of bacterial change. The relative abundance of only some taxa (e.g., Bifidobacteriaceae) were specifically associated with progesterone. In summary, pregnancy changes the microbial profiles in monkeys, but the bacterial diversity in their lower reproductive tract is different from women, and the composition of their intestinal symbionts remains stable until late gestation when several Firmicutes become more prominent.

6.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798310

RESUMO

LF82, an adherent invasive Escherichia coli pathobiont, is associated with ileal Crohn's disease, an inflammatory bowel disease of unknown etiology. Although LF82 contains no virulence genes, it carries several genetic differences, including single nucleotide polymorphisms (SNPs), that distinguish it from nonpathogenic E. coli. We have identified and investigated an extremely rare SNP that is within the highly conserved rpoD gene, encoding σ70, the primary sigma factor for RNA polymerase. We demonstrate that this single residue change (D445V) results in specific transcriptome and phenotypic changes that are consistent with multiple phenotypes observed in LF82, including increased antibiotic resistance and biofilm formation, modulation of motility, and increased capacity for methionine biosynthesis. Our work demonstrates that a single residue change within the bacterial primary sigma factor can lead to multiple alterations in gene expression and phenotypic changes, suggesting an underrecognized mechanism by which pathobionts and other strain variants with new phenotypes can emerge.

7.
Lab Chip ; 23(6): 1649-1663, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36751868

RESUMO

To improve our understanding of how the central nervous system functions in health and disease, we report the development of an integrated chip for studying the effects of the neurotransmitters dopamine and serotonin on adult rat hippocampal progenitor cell (AHPC) neurospheroids. This chip allows dopamine or serotonin located in one chamber to diffuse to AHPC neurospheroids cultured in an adjacent chamber through a built-in diffusion barrier created by an array of intentionally misaligned micropillars. The gaps among the micropillars are filled with porous poly(ethylene glycol) (PEG) gel to tune the permeability of the diffusion barrier. An electrochemical sensor is also integrated within the chamber where the neurospheroids can be cultured, thereby allowing monitoring of the concentrations of dopamine or serotonin. Experiments show that concentrations of the neurotransmitters inside the neurospheroid chamber can be increased over a period of several hours to over 10 days by controlling the compositions of the PEG gel inside the diffusion barrier. The AHPC neurospheroids cultured in the chip remain highly viable following dopamine or serotonin treatment. Cell proliferation and neuronal differentiation have also been observed following treatment, revealing that the AHPC neurospheroids are a valuable in vitro brain model for neurogenesis research. Finally, we show that by tuning the permeability of diffusion barrier, we can block transfer of Escherichia coli cells across the diffusion barrier, while allowing dopamine or serotonin to pass through. These results suggest the feasibility of using the chip to better understand the interactions between microbiota and brain via the gut-brain axis.


Assuntos
Dopamina , Microfluídica , Ratos , Animais , Serotonina , Encéfalo , Neurotransmissores
9.
Front Bioinform ; 2: 869150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304298

RESUMO

The Pathway Tools (PTools) software provides a suite of capabilities for storing and analyzing integrated collections of genomic and metabolic information in the form of organism-specific Pathway/Genome Databases (PGDBs). A microbial community is represented in PTools by generating a PGDB from each metagenome-assembled genome (MAG). PTools computes a metabolic reconstruction for each organism, and predicts its operons. The properties of individual MAGs can be investigated using the many search and visualization operations within PTools. PTools also enables the user to investigate the properties of the microbial community by issuing searches across the full community, and by performing comparative operations across genome and pathway information. The software can generate a metabolic network diagram for the community, and it can overlay community omics datasets on that network diagram. PTools also provides a tool for searching for metabolic transformation routes across an organism community.

11.
mSystems ; 7(5): e0029322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35968975

RESUMO

Animals colonized with a defined microbiota represent useful experimental systems to investigate microbiome function. The altered Schaedler flora (ASF) represents a consortium of eight murine bacterial species that have been used for more than 4 decades where the study of mice with a reduced microbiota is desired. In contrast to germ-free mice, or mice colonized with only one or two species, ASF mice show the normal gut structure and immune system development. To further expand the utility of the ASF, we have developed technical and bioinformatic resources to enable a systems-based analysis of microbiome function using this model. Here, we highlighted four distinct applications of these resources that enable and improve (i) measurements of the abundance of each ASF member by quantitative PCR; (ii) exploration and comparative analysis of ASF genomes and the metabolic pathways they encode that comprise the entire gut microbiome; (iii) global transcriptional profiling to identify genes whose expression responds to environmental changes within the gut; and (iv) discovery of genetic changes resulting from the evolutionary adaptation of the microbiota. These resources were designed to be accessible to a broad community of researchers that, in combination with conventionally-reared mice (i.e., with complex microbiome), should contribute to our understanding of microbiome structure and function. IMPORTANCE Improved experimental systems are needed to advance our understanding of how the gut microbiome influences processes of the mammalian host as well as microbial community structure and function. An approach that is receiving considerable attention is the use of animal models that harbor a stable microbiota of known composition, i.e., defined microbiota, which enables control over an otherwise highly complex and variable feature of mammalian biology. The altered Schaedler flora (ASF) consortium is a well-established defined microbiota model, where mice are stably colonized with 8 distinct murine bacterial species. To take better advantage of the ASF, we established new experimental and bioinformatics resources for researchers to make better use of this model as an experimental system to study microbiome function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/genética , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Bactérias/genética , Reação em Cadeia da Polimerase , Mamíferos/genética
12.
PLoS One ; 17(4): e0266005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381031

RESUMO

The gastrointestinal microbiota begins to be acquired at birth and continually matures through early adolescence. Despite the relevance for gut health, few studies have evaluated the impact of pathobiont colonization of neonates on the severity of colitis later in life. LF82 is an adherent invasive E. coli strain associated with ileal Crohn's disease. The aim of this study was to evaluate the severity of dextran sodium sulfate (DSS)-induced colitis in mice following E. coli LF82 colonization. Gnotobiotic mice harboring the altered Schaedler flora (ASF) were used as the model. While E. coli LF82 is neither adherent nor invasive, it was been demonstrated that adult ASF mice colonized with E. coli LF82 develop more severe DSS-induced colitis compared to control ASF mice treated with DSS. Therefore, we hypothesized that E. coli LF82 colonization of neonatal ASF mice would reduce the severity of DSS-induced inflammation compared to adult ASF mice colonized with E. coli LF82. To test this hypothesis, adult ASF mice were colonized with E. coli LF82 and bred to produce offspring (LF82N) that were vertically colonized with LF82. LF82N and adult-colonized (LF82A) mice were given 2.0% DSS in drinking water for seven days to trigger colitis. More severe inflammatory lesions were observed in the LF82N + DSS mice when compared to LF82A + DSS mice, and were characterized as transmural in most of the LF82N + DSS mice. Colitis was accompanied by secretion of proinflammatory cytokines (IFNγ, IL-17) and specific mRNA transcripts within the colonic mucosa. Using 16S rRNA gene amplicon sequencing, LF82 colonization did not induce significant changes in the ASF community; however, minimal changes in spatial redistribution by fluorescent in situ hybridization were observed. These results suggest that the age at which mice were colonized with E. coli LF82 pathobiont differentially impacted severity of subsequent colitic events.


Assuntos
Colite , Escherichia coli , Animais , Animais Recém-Nascidos , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Hibridização in Situ Fluorescente , Mucosa Intestinal/patologia , Camundongos , RNA Ribossômico 16S
13.
Microbiol Spectr ; 10(2): e0007322, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35323033

RESUMO

Gastrointestinal illnesses and dysbiosis are among the most common comorbidities reported in patients with neurodevelopmental disorders. The manuscript reports that C. difficile infection (CDI), predisposed by antibiotic-induced gut dysbiosis, causes significant alterations in dopamine metabolism in major dopaminergic brain regions in mice (P < 0.05). In addition, C. difficile infected mice exhibited significantly reduced dopamine beta-hydroxylase (DBH) activity compared to controls (P < 0.01). Moreover, a significantly increased serum concentration of p-cresol, a DBH inhibiting gut metabolite produced by C. difficile, was also observed in C. difficile infected mice (P < 0.05). Therefore, this study suggests a potential mechanistic link between CDI and alterations in the brain dopaminergic axis. Such alterations may plausibly influence the precipitation and aggravation of dopamine dysmetabolism-associated neurologic diseases in infected patients. IMPORTANCE The gut-brain axis is thought to play a significant role in the development and manifestation of neurologic diseases. This study reports significant alterations in the brain dopamine metabolism in mice infected with C. difficile, an important pathogen that overgrows in the gut after prolonged antibiotic therapy. Such alterations in specific brain regions may have an effect on the precipitation or manifestation of neurodevelopmental disorders in humans.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Antibacterianos , Encéfalo , Dopamina , Disbiose , Humanos , Camundongos
14.
Microbiol Spectr ; 9(2): e0124321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34550001

RESUMO

While Clostridioides difficile is recognized as an important human pathogen, it is also a significant cause of gastroenteritis and associated diarrhea in neonatal pigs. Since clinical disease is rarely diagnosed in piglets older than 1 week of age, it is hypothesized that natural resistance is associated with the increased complexity of the intestinal microbiota as the animals age. To test this, piglets were challenged with C. difficile (ribotype 078/toxinotype V) at times ranging from 2 to 14 days of age, and the severity of disease and microbial diversity of the cecal microbiota were assessed. Half of the piglets that were challenged with C. difficile at 2 and 4 days of age developed clinical signs of disease. The incidence of disease decreased rapidly as the piglets aged, to a point where none of the animals challenged after 10 days of age showed clinical signs. The cecal microbial community compositions of the piglets also clustered by age, with those of animals 2 to 4 days old showing closer relationships to one another than to those of older piglets (8 to 14 days). This clustering occurred across litters from 4 different sows, providing further evidence that the resistance to C. difficile disease in piglets greater than 1 week old is directly related to the diversity and complexity of the intestinal microbiota. IMPORTANCE C. difficile is an important bacterial pathogen that is the most common cause of infections associated with health care in the United States. It also causes significant morbidity and mortality in neonatal pigs, and currently there are no preventative treatments available to livestock producers. This study determined the age-related susceptibility of piglets to C. difficile over the first 2 weeks of life, along with documenting the natural age-related changes that occurred in the intestinal microbiota over the same time period in a controlled environment. We observed that the populations of intestinal bacteria within individual animals of the same age, regardless of litter, showed the highest degree of similarity. Identifying bacterial species associated with the acquisition of natural resistance observed in older pigs could lead to the development of new strategies to prevent and or treat disease caused by C. difficile infection.


Assuntos
Clostridioides difficile/fisiologia , Infecções por Clostridium/veterinária , Diarreia/veterinária , Microbioma Gastrointestinal , Doenças dos Suínos/prevenção & controle , Fatores Etários , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Infecções por Clostridium/prevenção & controle , Diarreia/microbiologia , Fezes/microbiologia , Feminino , Intestinos/microbiologia , Masculino , Suínos , Doenças dos Suínos/microbiologia
15.
Environ Health Perspect ; 129(8): 87005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34410835

RESUMO

BACKGROUND: Chronic environmental exposure to manganese (Mn) can cause debilitating damage to the central nervous system. However, its potential toxic effects on the enteric nervous system (ENS) have yet to be assessed. OBJECTIVE: We examined the effect of Mn on the ENS using both cell and animal models. METHOD: Rat enteric glial cells (EGCs) and mouse primary enteric cultures were exposed to increasing concentrations of Mn and cell viability and mitochondrial health were assessed using various morphological and functional assays. C57BL/6 mice were exposed daily to a sublethal dose of Mn (15mg/kg/d) for 30 d. Gut peristalsis, enteric inflammation, gut microbiome profile, and fecal metabolite composition were assessed at the end of exposure. RESULTS: EGC mitochondria were highly susceptible to Mn neurotoxicity, as evidenced by lower mitochondrial mass, adenosine triphosphate-linked respiration, and aconitase activity as well as higher mitochondrial superoxide, upon Mn exposure. Minor differences were seen in the mouse model: specifically, longer intestinal transit times and higher levels of colonic inflammation. CONCLUSION: Based on our findings from this study, Mn preferentially induced mitochondrial dysfunction in a rat EGC line and in vivo resulted in inflammation in the ENS. https://doi.org/10.1289/EHP7877.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Animais , Manganês/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Ratos
16.
EcoSal Plus ; 9(2): eESP00062020, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125584

RESUMO

Over the last decade, the study of CRISPR-Cas systems has progressed from a newly discovered bacterial defense mechanism to a diverse suite of genetic tools that have been applied across all domains of life. While the initial applications of CRISPR-Cas technology fulfilled a need to more precisely edit eukaryotic genomes, creative "repurposing" of this adaptive immune system has led to new approaches for genetic analysis of microorganisms, including improved gene editing, conditional gene regulation, plasmid curing and manipulation, and other novel uses. The main objective of this review is to describe the development and current state-of-the-art use of CRISPR-Cas techniques specifically as it is applied to members of the Enterobacteriales. While many of the applications covered have been initially developed in Escherichia coli, we also highlight the potential, along with the limitations, of this technology for expanding the availability of genetic tools in less-well-characterized non-model species, including bacterial pathogens.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Bactérias/genética , Genoma , Plasmídeos/genética
17.
FASEB J ; 35(6): e21682, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042210

RESUMO

Over the last decade, multiple studies have highlighted the essential role of gut microbiota in normal infant development. However, the sensitive periods during which gut bacteria are established and become associated with physical growth and maturation of the brain are still poorly defined. This study tracked the assembly of the intestinal microbiota during the initial nursing period, and changes in community structure after transitioning to solid food in infant rhesus monkeys (Macaca mulatta). Anthropometric measures and rectal swabs were obtained at 2-month intervals across the first year of life and bacterial taxa identified by 16S rRNA gene sequencing. At 12 months of age, total brain and cortical regions volumes were quantified through structural magnetic resonance imaging. The bacterial community structure was dynamic and characterized by discrete maturational phases, reflecting an early influence of breast milk and the later transition to solid foods. Commensal microbial taxa varied with diet similar to findings in other animals and human infants; however, monkeys differ in the relative abundances of Lactobacilli and Bifidobacteria, two taxa predominant in breastfed human infants. Higher abundances of taxa in the phylum Proteobacteria during nursing were predictive of slower growth trajectories and smaller brain volumes at one year of age. Our findings define discrete phases of microbial succession in infant monkeys and suggest there may be a critical period during nursing when endogenous differences in certain taxa can shift the community structure and influence the pace of physical growth and the maturational trajectory of the brain.


Assuntos
Animais Recém-Nascidos/crescimento & desenvolvimento , Encéfalo/fisiologia , Microbioma Gastrointestinal , Leite/microbiologia , Proteobactérias/fisiologia , Animais , Encéfalo/microbiologia , Dieta , Fezes/microbiologia , Feminino , Macaca mulatta , Masculino
18.
Antibiotics (Basel) ; 10(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672258

RESUMO

Bovine digital dermatitis (DD) is a contagious infectious cause of lameness in cattle with unknown definitive etiologies. Many of the bacterial species detected in metagenomic analyses of DD lesions are difficult to culture, and their antimicrobial resistance status is largely unknown. Recently, a novel proximity ligation-guided metagenomic approach (Hi-C ProxiMeta) has been used to identify bacterial reservoirs of antimicrobial resistance genes (ARGs) directly from microbial communities, without the need to culture individual bacteria. The objective of this study was to track tetracycline resistance determinants in bacteria involved in DD pathogenesis using Hi-C. A pooled sample of macerated tissues from clinical DD lesions was used for this purpose. Metagenome deconvolution using ProxiMeta resulted in the creation of 40 metagenome-assembled genomes with ≥80% complete genomes, classified into five phyla. Further, 1959 tetracycline resistance genes and ARGs conferring resistance to aminoglycoside, beta-lactams, sulfonamide, phenicol, lincosamide, and erythromycin were identified along with their bacterial hosts. In conclusion, the widespread distribution of genes conferring resistance against tetracycline and other antimicrobials in bacteria of DD lesions is reported for the first time. Use of proximity ligation to identify microorganisms hosting specific ARGs holds promise for tracking ARGs transmission in complex microbial communities.

19.
Mol Nutr Food Res ; 65(8): e2001018, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33599094

RESUMO

SCOPE: Iron deficiency (ID) compromises the health of infants worldwide. Although readily treated with iron, concerns remain about the persistence of some effects. Metabolic and gut microbial consequences of infantile ID were investigated in juvenile monkeys after natural recovery (pID) from iron deficiency or post-treatment with iron dextran and B vitamins (pID+Fe). METHODS AND RESULTS: Metabolomic profiling of urine and plasma is conducted with 1 H nuclear magnetic resonance (NMR) spectroscopy. Gut microbiota are characterized from rectal swabs by amplicon sequencing of the 16S rRNA gene. Urinary metabolic profiles of pID monkeys significantly differed from pID+Fe and continuously iron-sufficient controls (IS) with higher maltose and lower amounts of microbial-derived metabolites. Persistent differences in energy metabolism are apparent from the plasma metabolic phenotypes with greater reliance on anaerobic glycolysis in pID monkeys. Microbial profiling indicated higher abundances of Methanobrevibacter, Lachnobacterium, and Ruminococcus in pID monkeys and any history of ID resulted in a lower Prevotella abundance compared to the IS controls. CONCLUSIONS: Lingering metabolic and microbial effects are found after natural recovery from ID. These long-term biochemical derangements are not present in the pID+Fe animals emphasizing the importance of the early detection and treatment of early-life ID to ameliorate its chronic metabolic effects.


Assuntos
Anemia Ferropriva/metabolismo , Anemia Ferropriva/microbiologia , Microbioma Gastrointestinal/fisiologia , Complexo Ferro-Dextran/farmacologia , Anemia Ferropriva/tratamento farmacológico , Animais , Animais Recém-Nascidos , Análise Química do Sangue , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Macaca mulatta , Metaboloma , RNA Ribossômico 16S , Urina/química
20.
HardwareX ; 10: e00249, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35607694

RESUMO

A hallmark of bacterial populations cultured in vitro is their homogeneity of growth, where the majority of cells display identical growth rate, cell size and content. Recent insights, however, have revealed that even cells growing in exponential growth phase can be heterogeneous with respect to variables typically used to measure cell growth. Bacterial heterogeneity has important implications for how bacteria respond to environmental stresses, such as antibiotics. The phenomenon of antimicrobial persistence, for example, has been linked to a small subpopulation of cells that have entered into a state of dormancy where antibiotics are no longer effective. While methods have been developed for identifying individual non-growing cells in bacterial cultures, there has been less attention paid to how these cells may influence growth in colonies on a solid surface. In response, we have developed a low-cost, open-source platform to perform automated image capture and image analysis of bacterial colony growth on multiple nutrient agar plates simultaneously. The descriptions of the hardware and software are included, along with details about the temperature-controlled growth chamber, high-resolution scanner, and graphical interface to extract and plot the colony lag time and growth kinetics. Experiments were conducted using a wild type strain of Escherichia coli K12 to demonstrate the feasibility and operation of our setup. By automated tracking of bacterial growth kinetics in colonies, the system holds the potential to reveal new insights into understanding the impact of microbial heterogeneity on antibiotic resistance and persistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...