Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 19(3)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35613546

RESUMO

Objective. Brain-machine interfaces (BMIs) have the potential to restore motor function but are currently limited by electrode count and long-term recording stability. These challenges may be solved through the use of free-floating 'motes' which wirelessly transmit recorded neural signals, if power consumption can be kept within safe levels when scaling to thousands of motes. Here, we evaluated a pulse-interval modulation (PIM) communication scheme for infrared (IR)-based motes that aims to reduce the wireless data rate and system power consumption.Approach. To test PIM's ability to efficiently communicate neural information, we simulated the communication scheme in a real-time closed-loop BMI with non-human primates. Additionally, we performed circuit simulations of an IR-based 1000-mote system to calculate communication accuracy and total power consumption.Main results. We found that PIM at 1 kb/s per channel maintained strong correlations with true firing rate and matched online BMI performance of a traditional wired system. Closed-loop BMI tests suggest that lags as small as 30 ms can have significant performance effects. Finally, unlike other IR communication schemes, PIM is feasible in terms of power, and neural data can accurately be recovered on a receiver using 3 mW for 1000 channels.Significance.These results suggest that PIM-based communication could significantly reduce power usage of wireless motes to enable higher channel-counts for high-performance BMIs.


Assuntos
Interfaces Cérebro-Computador , Animais , Comunicação , Eletrodos , Primatas , Tecnologia sem Fio
2.
ACS Photonics ; 8(5): 1430-1438, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34368396

RESUMO

Arrays of floating neural sensors with high channel count that cover an area of square centimeters and larger would be transformative for neural engineering and brain-machine interfaces. Meeting the power and wireless data communications requirements within the size constraints for each neural sensor has been elusive due to the need to incorporate sensing, computing, communications, and power functionality in a package of approximately 100 micrometers on a side. In this work, we demonstrate a near infrared optical power and data communication link for a neural recording system that satisfies size requirements to achieve dense arrays and power requirements to prevent tissue heating. The optical link is demonstrated using an integrated optoelectronic device consisting of a tandem photovoltaic cell and microscale light emitting diode. End-to-end functionality of a wireless neural link within system constraints is demonstrated using a pre-recorded neural signal between a self-powered CMOS integrated circuit and single photon avalanche photodiode.

3.
IEEE J Photovolt ; 10(6): 1721-1726, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33224555

RESUMO

Dual-junction GaAs photovoltaic (PV) cells and modules at sub millimeter scale are demonstrated for efficient wireless power transfer for Internet of Things (IoT) and bio-implantable applications under low-flux illumination. The dual-junction approach meets demanding requirements for these applications by increasing the output voltage per cell with reduced area losses from isolation and interconnects. A single PV cell (150 µm × 150 µm) based on the dual-junction design demonstrates power conversion efficiency above 22% with greater than 1.2 V output voltage under low-flux 850 nm near-infrared LED illumination at 6.62 µW/mm2, which is sufficient for batteryless operation of miniaturized CMOS IC chips. The output voltage of dual-junction PV modules with 4 series-connected cells demonstrates greater than 5 V for direct battery charging while maintaining a module power conversion efficiency of more than 23%.

4.
Prog Photovolt ; 27(6): 540-546, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34354330

RESUMO

Photovoltaic modules at the mm-scale are demonstrated in this work to power wirelessly interconnected mm-scale sensor systems operating under low flux conditions, enabling applications in the Internet of Things and biological sensors. Module efficiency is found to be limited by perimeter recombination for individual cells, and shunt leakage for the series-connected module configuration. We utilize GaAs and AlGaAs junction barrier isolation between interconnected cells to dramatically reduce shunt leakage current. A photovoltaic module with eight series-connected cells and total area of 1.27-mm2 demonstrates a power conversion efficiency of greater than 26 % under low-flux near infrared illumination (850 nm at 1 µW/mm2). The output voltage of the module is greater than 5 V, providing a voltage up-conversion efficiency of more than 90 %. We demonstrate direct photovoltaic charging of a 16 µAh pair of thin-film lithium-ion batteries under dim light conditions, enabling the perpetual operation of practical mm-scale wirelessly interconnected systems.

5.
IEEE Trans Electron Devices ; 64(11): 4554-4560, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29129936

RESUMO

The design and characterization of mm-scale GaAs photovoltaic cells are presented and demonstrate highly efficient energy harvesting in the near infrared. Device performance is improved dramatically by optimization of the device structure for the near-infrared spectral region and improving surface and sidewall passivation with ammonium sulfide treatment and subsequent silicon nitride deposition. The power conversion efficiency of a 6.4 mm2 cell under 660 nW/mm2 NIR illumination at 850 nm is greater than 30 %, which is higher than commercial crystalline silicon solar cells under similar illumination conditions. Critical performance limiting factors of sub-mm scale GaAs photovoltaic cells are addressed and compared to theoretical calculations.

6.
IEEE Trans Electron Devices ; 64(5): 2432-2437, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29056754

RESUMO

Wireless biomedical implantable devices on the mm-scale enable a wide range of applications for human health, safety, and identification, though energy harvesting and power generation are still looming challenges that impede their widespread application. Energy scavenging approaches to power biomedical implants have included thermal [1-3], kinetic [4-6], radio-frequency [7-11] and radiative sources [12-14]. However, the achievement of efficient energy scavenging for biomedical implants at the mm-scale has been elusive. Here we show that photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 31 % for GaAs under 1.06 µW/mm2 infrared irradiation at 850 nm. Finally, these photovoltaic cells demonstrate highly efficient energy harvesting through biological tissue from ambient sunlight, or irradiation from infrared sources such as used in present-day surveillance systems, by utilizing the near infrared (NIR) transparency window between the 650 nm and 950 nm wavelength range [15-17].

7.
IEEE Trans Electron Devices ; 64(1): 15-20, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34650311

RESUMO

Silicon photovoltaics are prospective candidates to power mm-scale implantable devices. These applications require excellent performance for small-area cells under low-flux illumination condition, which is not commonly achieved for silicon cells due to shunt leakage and recombination losses. Small area (1-10 mm2) silicon photovoltaic cells are studied in this work, where performance improvements are demonstrated using a surface n-type doped emitter and Si3N4 passivation. A power conversion efficiency of more than 17% is achieved for 660 nW/mm2 illumination at 850 nm. The silicon cells demonstrate improved power conversion efficiency and reduced degradation under low illumination conditions in comparison to conventional crystalline silicon photovoltaic cells available commercially.

8.
IEEE Trans Electron Devices ; 63(7): 2820-2825, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28133394

RESUMO

GaAs photovoltaics are promising candidates for indoor energy harvesting to power small-scale (≈1 mm2) electronics. This application has stringent requirements on dark current, recombination, and shunt leakage paths due to low-light conditions and small device dimensions. The power conversion efficiency and the limiting mechanisms in GaAs photovoltaic cells under indoor lighting conditions are studied experimentally. Voltage is limited by generation-recombination dark current attributed to perimeter sidewall surface recombination based on the measurements of variable cell area. Bulk and perimeter recombination coefficients of 1.464 pA/mm2 and 0.2816 pA/mm, respectively, were extracted from dark current measurements. Resulting power conversion efficiency is strongly dependent on cell area, where current GaAs of 1-mm2 indoor photovoltaic cells demonstrates power conversion efficiency of approximately 19% at 580 lx of white LED illumination. Reductions in both bulk and perimeter sidewall recombination are required to increase maximum efficiency (while maintaining small cell area near 1 mm2) to approach the theoretical power conversion efficiency of 40% for GaAs cells under typical indoor lighting conditions.

9.
Opt Lett ; 40(11): 2637-40, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26030577

RESUMO

We computationally study a normal incidence narrowband transmission filter based on a subwavelength dielectric grating that operates through Fano interference between supported guided leaky modes of the system. We characterize the filtering capabilities as the cross section of the grating is manipulated and suggest techniques for experimental demonstration. Using group theory, we study the plane wave coupling to the supported modes that leads to broadband reflectance and narrowband transmittance responses for rectangular, pentagonal, rhomboidal, and right trapezoidal cross-sectional geometries.

10.
Artigo em Inglês | MEDLINE | ID: mdl-24474130

RESUMO

This paper presents a voltage-controlled, highquality factor (Q) composite thin-film bulk acoustic resonator (FBAR) at 1.28 GHz. The composite FBAR consists of a thin layer of barium strontium titanate (BST) that is sandwiched between two electrodes deposited on a silicon-on-insulator (SOI) wafer. The BST layer, which has a strong electrostrictive effect, is used for electromechanical transduction by means of its voltage-induced piezoelectricity. The silicon layer, with its low mechanical loss, increases the Q of the resonator. The composite FBAR presented here exhibits Qs exceeding 800 with a resonance frequency and Q product (f × Q) of 1026 GHz.


Assuntos
Acústica/instrumentação , Eletrodos , Membranas Artificiais , Sistemas Microeletromecânicos/instrumentação , Silício/química , Transdutores , Ultrassonografia/instrumentação , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Processamento de Sinais Assistido por Computador/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...