Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(5): 1784-1798, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38387080

RESUMO

The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.


Assuntos
Proteína Huntingtina , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Doença de Huntington/genética , Doença de Huntington/terapia , Animais , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Camundongos , Proteína Huntingtina/genética , Proteína 3 Homóloga a MutS/genética , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Encéfalo/patologia , Encéfalo/metabolismo
2.
Brain Commun ; 6(1): fcae030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370446

RESUMO

Huntington's disease is an inherited neurodegenerative disorder for which a wide range of disease-modifying therapies are in development and the availability of biomarkers to monitor treatment response is essential for the success of clinical trials. Baseline levels of neurofilament light chain in CSF and plasma have been shown to be effective in predicting clinical disease status, subsequent clinical progression and brain atrophy. The identification of further sensitive prognostic fluid biomarkers is an active research area, and total-Tau and YKL-40 levels have been shown to be increased in CSF from Huntington's disease mutation carriers. The use of readouts with clinical utility in the preclinical assessment of potential therapeutics should aid in the translation of new treatments. Here, we set out to determine how the concentrations of these three proteins change in plasma and CSF with disease progression in representative, well-established mouse models of Huntington's disease. Plasma and CSF were collected throughout disease progression from R6/2 transgenic mice with CAG repeats of 200 or 90 codons (R6/2:Q200 and R6/2:Q90), zQ175 knock-in mice and YAC128 transgenic mice, along with their respective wild-type littermates. Neurofilament light chain and total-Tau concentrations were quantified in CSF and plasma using ultrasensitive single-molecule array (Quanterix) assays, and a novel Quanterix assay was developed for breast regression protein 39 (mouse homologue of YKL-40) and used to quantify breast regression protein 39 levels in plasma. CSF levels of neurofilament light chain and plasma levels of neurofilament light chain and breast regression protein 39 increased in wild-type biofluids with age, whereas total-Tau remained constant. Neurofilament light chain and breast regression protein 39 were elevated in the plasma and CSF from Huntington's disease mouse models, as compared with wild-type littermates, at presymptomatic stages, whereas total-Tau was only increased at the latest disease stages analysed. Levels of biomarkers that had been measured in the same CSF or plasma samples taken at the latest stages of disease were correlated. The demonstration that breast regression protein 39 constitutes a robust plasma biomarker in Huntington's disease mouse models supports the further investigation of YKL-40 as a CSF biomarker for Huntington's disease mutation carriers. Neurofilament light chain and Tau are considered markers of neuronal damage, and breast regression protein 39 is a marker of inflammation; the similarities and differences in the levels of these proteins between mouse models may provide future insights into their underlying pathology. These data will facilitate the use of fluid biomarkers in the preclinical assessment of therapeutic agents for Huntington's disease, providing readouts with direct relevance to clinical trials.

3.
Brain ; 145(12): 4409-4424, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793238

RESUMO

Huntington disease is caused by a CAG repeat expansion in exon 1 of the huntingtin gene (HTT) that is translated into a polyglutamine stretch in the huntingtin protein (HTT). We previously showed that HTT mRNA carrying an expanded CAG repeat was incompletely spliced to generate HTT1a, an exon 1 only transcript, which was translated to produce the highly aggregation-prone and pathogenic exon 1 HTT protein. This occurred in all knock-in mouse models of Huntington's disease and could be detected in patient cell lines and post-mortem brains. To extend these findings to a model system expressing human HTT, we took advantage of YAC128 mice that are transgenic for a yeast artificial chromosome carrying human HTT with an expanded CAG repeat. We discovered that the HTT1a transcript could be detected throughout the brains of YAC128 mice. We implemented RNAscope to visualize HTT transcripts at the single molecule level and found that full-length HTT and HTT1a were retained together in large nuclear RNA clusters, as well as being present as single transcripts in the cytoplasm. Homogeneous time-resolved fluorescence analysis demonstrated that the HTT1a transcript had been translated to produce the exon 1 HTT protein. The levels of exon 1 HTT in YAC128 mice, correlated with HTT aggregation, supportive of the hypothesis that exon 1 HTT initiates the aggregation process. Huntingtin-lowering strategies are a major focus of therapeutic development for Huntington's disease. These approaches often target full-length HTT alone and would not be expected to reduce pathogenic exon 1 HTT levels. We have established YAC128 mouse embryonic fibroblast lines and shown that, together with our QuantiGene multiplex assay, these provide an effective screening tool for agents that target HTT transcripts. The effects of current targeting strategies on nuclear RNA clusters are unknown, structures that may have a pathogenic role or alternatively could be protective by retaining HTT1a in the nucleus and preventing it from being translated. In light of recently halted antisense oligonucleotide trials, it is vital that agents targeting HTT1a are developed, and that the effects of HTT-lowering strategies on the subcellular levels of all HTT transcripts and their various HTT protein isoforms are understood.


Assuntos
Doença de Huntington , Humanos , Camundongos , Animais , Doença de Huntington/genética , Proteína Huntingtina/genética , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , RNA Nuclear , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...