Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951222

RESUMO

Competing species may show positive correlations in abundance through time and space if they rely on a shared resource. Such positive correlations might obscure resource partitioning that facilitates competitor coexistence. Here, we examine the potential for resource partitioning between two ecologically similar midge species (Diptera: Chironomidae) in Lake Mývatn, Iceland. Tanytarsus gracilentus and Chironomus islandicus show large, roughly synchronized population fluctuations, implying potential reliance on a shared fluctuating resource and thereby posing the question of how these species coexist at high larval abundances. We first considered spatial partitioning of larvae. Abundances of both species were positively correlated in space; thus, spatial partitioning across different sites in the lake did not appear to be strong. We then inferred differences in dietary resources with stable carbon isotopes. T. gracilentus larvae had significantly higher δ13C values than C. islandicus, suggesting interspecific differences in resource use. Differences in resource selectivity, tube-building behavior, and feeding styles may facilitate resource partitioning between these species. Relative to surface sediments, T. gracilentus had higher δ13C values, suggesting that they selectively graze on 13C-enriched resources such as productive algae from the surface of their tubes. In contrast, C. islandicus had lower δ13C values than surface sediments, suggesting reliance on 13C-depleted resources that may include detrital organic matter and associated microbes that larvae selectively consume from the sediment surface or within their burrow walls. Overall, our study illustrates that coexisting and ecologically similar species may show positive correlations in space and time while using different resources at fine spatial scales.

2.
Ecol Evol ; 14(6): e11560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932944

RESUMO

Understanding which factors shape and maintain biodiversity is essential to understand how ecosystems respond to crises. Biodiversity observed in ecological communities is a result of the interaction of various factors which can be classified as either neutral- or niche-based. The importance of these processes has been debated, but many scientists believe that both processes are important. Here, we use unique ecosystems in groundwater-filled lava caves near Lake Mývatn, to examine the importance of neutral- versus niche-based factors for shaping invertebrate communities. We studied diversity in benthic and epibenthic invertebrate communities and related them to ecological variables. We hypothesized that if neutral processes are the main drivers of community structure we would not see any clear relationship between the structure of community within caves and ecological factors. If niche-based processes are important we should see clear relationships between community structure and variation in ecological variables across caves. Both communities were species poor, with low densities of invertebrates, showing the resource limited and oligotrophic nature of these systems. Unusually for Icelandic freshwater ecosystems, the benthic communities were not dominated by Chironomidae (Diptera) larvae, but rather by crustaceans, mainly Cladocera. The epibenthic communities were not shaped by environmental variables, suggesting that they may have been structured primarily by neutral processes. The benthic communities were shaped by the availability of energy, and to some extent pH, suggesting that niche-based processes were important drivers of community structure, although neutral processes may still be relevant. The results suggest that both processes are important for invertebrate communities in freshwater, and research should focus on understanding both of these processes. The ponds we studied are representative of a number of freshwater ecosystems that are extremely vulnerable for human disturbance, making it even more important to understand how their biodiversity is shaped and maintained.

3.
Genome Biol Evol ; 16(5)2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38662498

RESUMO

Nonbiting midges (family Chironomidae) are found throughout the world in a diverse array of aquatic and terrestrial habitats, can often tolerate harsh conditions such as hypoxia or desiccation, and have consistently compact genomes. Yet we know little about the shared molecular basis for these attributes and how they have evolved across the family. Here, we address these questions by first creating high-quality, annotated reference assemblies for Tanytarsus gracilentus (subfamily Chironominae, tribe Tanytarsini) and Parochlus steinenii (subfamily Podonominae). Using these and other publicly available assemblies, we created a time-calibrated phylogenomic tree for family Chironomidae with outgroups from order Diptera. We used this phylogeny to test for features associated with compact genomes, as well as examining patterns of gene family evolution and positive selection that may underlie chironomid habitat tolerances. Our results suggest that compact genomes evolved in the common ancestor of Chironomidae and Ceratopogonidae and that this occurred mainly through reductions in noncoding regions (introns, intergenic sequences, and repeat elements). Significantly expanded gene families in Chironomidae included biological processes that may relate to tolerance of stressful environments, such as temperature homeostasis, carbohydrate transport, melanization defense response, and trehalose transport. We identified several positively selected genes in Chironomidae, notably sulfonylurea receptor, CREB-binding protein, and protein kinase D. Our results improve our understanding of the evolution of small genomes and extreme habitat use in this widely distributed group.


Assuntos
Chironomidae , Ecossistema , Genoma de Inseto , Filogenia , Chironomidae/genética , Animais , Evolução Molecular , Seleção Genética
4.
Glob Chang Biol ; 30(1): e17014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943090

RESUMO

While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long-term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midge Tanytarsus gracilentus and potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non-significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state-space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with 13 C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long-term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.


Assuntos
Mudança Climática , Lagos , Animais , Densidade Demográfica , Temperatura , Tamanho Corporal , Isótopos de Carbono , Insetos , Água
5.
Ecol Evol ; 13(4): e9952, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091554

RESUMO

Animals show among-individual variation in behaviors, including migration behaviors, which are often repeatable across time periods and contexts, commonly termed "personality." These behaviors can be correlated, forming a behavioral syndrome. In this study, we assessed the repeatability and correlation of different behavioral traits, i.e., boldness, exploration, and sociality, and the link to feeding migration patterns in Atlantic cod juveniles. To do so, we collected repeated measurements within two short-term (3 days) and two long-term (2 months) intervals of these personality traits and genotypes of the Pan I locus, which is correlated with feeding migration patterns in this species. We found high repeatabilities for exploration behavior in the short- and long-term intervals, and a trend for the relationship between exploration and the Pan I locus. Boldness and sociality were only repeatable in the second short-term interval indicating a possible development of stability over time and did not show a relation with the Pan I locus. We found no indication of behavioral syndromes among the studied traits. We were unable to identify the existence of a migration syndrome for the frontal genotype, which is the reason that the link between personality and migration remains inconclusive, but we demonstrated a possible link between exploration and the Pan I genotype. This supports the need for further research that should focus on the effect of exploration tendency and other personality traits on cod movement, including the migratory (frontal) ecotype to develop management strategies based on behavioral units, rather than treating the population as a single homogeneous stock.

6.
Am Nat ; 201(3): E41-E55, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36848516

RESUMO

AbstractUncovering the demographic basis of population fluctuations is a central goal of population biology. This is particularly challenging for spatially structured populations, which require disentangling synchrony in demographic rates from coupling via movement between locations. In this study, we fit a stage-structured metapopulation model to a 29-year time series of threespine stickleback abundance in the heterogeneous and productive Lake Mývatn, Iceland. The lake comprises two basins (North and South) connected by a channel through which the stickleback disperse. The model includes time-varying demographic rates, allowing us to assess the potential contributions of recruitment and survival, spatial coupling via movement, and demographic transience to the population's large fluctuations in abundance. Our analyses indicate that recruitment was only modestly synchronized between the two basins, whereas survival probabilities of adults were more strongly synchronized, contributing to cyclic fluctuations in the lake-wide population size with a period of approximately 6 years. The analyses further show that the two basins were coupled through movement, with the North Basin subsidizing the South Basin and playing a dominant role in driving the lake-wide dynamics. Our results show that cyclic fluctuations of a metapopulation can be explained in terms of the combined effects of synchronized demographic rates and spatial coupling.


Assuntos
Biologia , Smegmamorpha , Animais , Lagos , Movimento , Densidade Demográfica
7.
Mol Ecol ; 32(7): 1708-1725, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36627230

RESUMO

Adaptive genetic divergence occurs when selection imposed by the environment causes the genomic component of the phenotype to differentiate. However, genomic signatures of natural selection are usually identified without information on which trait is responding to selection by which selective agent(s). Here, we integrate whole-genome sequencing with phenomics and measures of putative selective agents to assess the extent of adaptive divergence in threespine stickleback occupying the highly heterogeneous lake Mývatn, NE Iceland. We find negligible genome wide divergence, yet multiple traits (body size, gill raker structure and defence traits) were divergent along known ecological gradients (temperature, predatory bird densities and water depth). SNP based heritability of all measured traits was high (h2  = 0.42-0.65), indicating adaptive potential for all traits. Environment-association analyses further identified thousands of loci putatively involved in selection, related to genes linked to, for instance, neuron development and protein phosphorylation. Finally, we found that loci linked to water depth were concurrently associated with pelvic spine length variation - supporting the conclusion that divergence in pelvic spine length occurred in the face of gene flow. Our results suggest that whilst there is substantial genetic variation in the traits measured, phenotypic divergence of Mývatn stickleback is mostly weakly associated with environmental gradients, potentially as a result of substantial gene flow. Our study illustrates the value of integrative studies that combine genomic assays of multivariate trait variation with landscape genomics.


Assuntos
Variação Genética , Smegmamorpha , Animais , Genoma/genética , Fenótipo , Seleção Genética , Smegmamorpha/genética , Água
8.
Ecology ; 104(2): e3901, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36310437

RESUMO

Population cycles can be caused by consumer-resource interactions. Confirming the role of consumer-resource interactions, however, can be challenging due to an absence of data for the resource candidate. For example, interactions between midge larvae and benthic algae likely govern the high-amplitude population fluctuations of Tanytarsus gracilentus in Lake Mývatn, Iceland, but there are no records of benthic resources concurrent with adult midge population counts. Here, we investigate consumer population dynamics using the carbon stable isotope signatures of archived T. gracilentus specimens collected from 1977 to 2015, under the assumption that midge δ13 C values reflect those of resources they consumed as larvae. We used the time series for population abundance and δ13 C to estimate interactions between midges and resources while accounting for measurement error and possible preservation effects on isotope values. Results were consistent with consumer-resource interactions: high δ13 C values preceded peaks in the midge population, and δ13 C values tended to decline after midges reached high abundance. One interpretation of this dynamic coupling is that midge isotope signatures reflect temporal variation in benthic algal δ13 C values, which we expected to mirror primary production. Following from this explanation, high benthic production (enriched δ13 C values) would contribute to increased midge abundance, and high midge abundance would result in declining benthic production (depleted δ13 C values). An additional and related explanation is that midges deplete benthic algal abundance once they reach peak densities, causing midges to increase their relative reliance on other resources including detritus and associated microorganisms. Such a shift in resource use would be consistent with the subsequent decline in midge δ13 C values. Our study adds evidence that midge-resource interactions drive T. gracilentus fluctuations and demonstrates a novel application of stable isotope time-series data to understand consumer population dynamics.


Assuntos
Ecossistema , Lagos , Animais , Isótopos de Carbono/análise , Plantas , Dinâmica Populacional , Larva , Carbono
9.
Behav Processes ; 202: 104736, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028060

RESUMO

Individuals within a population often behave differently and these differences can be consistent over time and/or context, also termed "animal personality". Animal personality has been commonly classified into five axes with studies aiming to validate these axes. One subject that has surprisingly not received full attention yet is the difference between the two personality axes "activity" and "exploration-avoidance", i.e. behaviour in a known vs an unknown environment. Despite this clear difference in definition, many studies measure activity in an unknown environment and term it activity, while underlying motivations between the two environments are different. This study aimed to detect the two personality traits "activity" and "exploration" in Atlantic cod juveniles, and to investigate whether they support the distinctive definitions proposed by previous authors. This study showed significant consistency in locomotion variation in both environments, i.e. personality. In addition, the two environments clearly elicited different behaviours; Atlantic cod juvenile behaviour was more repeatable and they moved more in the known vs the unknown environment, and no correlation of the proportional locomotion between the two was found. This demonstrates that locomotion in both environments, i.e. the personality axes "activity" and "exploration", should not be confused nor treated as if they reflect the same personality trait.


Assuntos
Gadus morhua , Animais , Locomoção , Personalidade
10.
Ecology ; 102(11): e03513, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34365638

RESUMO

Ecosystem engineers have large impacts on the communities in which they live, and these impacts may feed back to populations of engineers themselves. In this study, we assessed the effect of ecosystem engineering on density-dependent feedbacks for midges in Lake Mývatn, Iceland. The midge larvae reside in the sediment and build silk tubes that provide a substrate for algal growth, thereby elevating benthic primary production. Benthic algae are in turn the primary food source for the midge larvae, setting the stage for the effects of engineering to feed back to the midges themselves. Using a field mesocosm experiment manipulating larval midge densities, we found a generally positive but nonlinear relationship between density and benthic production. Furthermore, adult emergence increased with the primary production per midge larva. By combining these two relationships in a simple model, we found that the positive effect of midges on benthic production weakened negative density dependence at low to intermediate larval densities. However, this benefit disappeared at high densities when midge consumption of primary producers exceeded their positive effects on primary production through ecosystem engineering. Our results illustrate how ecosystem engineering can alter density-dependent feedbacks for engineer populations.


Assuntos
Chironomidae , Ecossistema , Animais , Retroalimentação , Insetos , Lagos
11.
Ecology ; 102(1): e03197, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966617

RESUMO

Pulsed fluxes of organisms across ecosystem boundaries can exert top-down and bottom-up effects in recipient food webs, through both direct effects on the subsidized trophic levels and indirect effects on other components of the system. While previous theoretical and empirical studies demonstrate the influence of allochthonous subsidies on bottom-up and top-down processes, understanding how these forces act in conjunction is still limited, particularly when an allochthonous resource can simultaneously subsidize multiple trophic levels. Using the Lake Mývatn region in Iceland as an example system of allochthony and its potential effects on multiple trophic levels, we analyzed a mathematical model to evaluate how pulsed subsidies of aquatic insects affect the dynamics of a soil-plant-arthropod food web. We found that the relative balance of top-down and bottom-up effects on a given food web compartment was determined by trophic position, subsidy magnitude, and top predators' ability to exploit the subsidy. For intermediate trophic levels (e.g., detritivores and herbivores), we found that the subsidy could either alleviate or intensify top-down pressure from the predator. For some parameter combinations, alleviation and intensification occurred sequentially during and after the resource pulse. The total effect of the subsidy on detritivores and herbivores, including top-down and bottom-up processes, was determined by the rate at which predator consumption saturated with increasing size of the allochthonous subsidy, with greater saturation leading to increased bottom-up effects. Our findings illustrate how resource pulses to multiple trophic levels can influence food web dynamics by changing the relative strength of bottom-up and top-down effects, with bottom-up predominating top-down effects in most scenarios in this subarctic system.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Herbivoria , Islândia , Insetos
12.
Ecol Evol ; 6(2): 573-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26843940

RESUMO

It is increasingly recognized that evolution may occur in ecological time. It is not clear, however, how fast evolution - or phenotypic change more generally - may be in comparison with the associated ecology, or whether systems with fast ecological dynamics generally have relatively fast rates of phenotypic change. We developed a new dataset on standardized rates of change in population size and phenotypic traits for a wide range of species and taxonomic groups. We show that rates of change in phenotypes are generally no more than 2/3, and on average about 1/4, the concurrent rates of change in population size. There was no relationship between rates of population change and rates of phenotypic change across systems. We also found that the variance of both phenotypic and ecological rates increased with the mean across studies following a power law with an exponent of two, while temporal variation in phenotypic rates was lower than in ecological rates. Our results are consistent with the view that ecology and evolution may occur at similar time scales, but clarify that only rarely do populations change as fast in traits as they do in abundance.

13.
Ecol Lett ; 19(1): 37-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563752

RESUMO

Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.


Assuntos
Formigas/fisiologia , Afídeos/fisiologia , Herbivoria , Luz Solar , Simbiose , Animais , Colorado , Ligusticum , Densidade Demográfica , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...