Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Environ Sci Technol ; 58(4): 1802-1812, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38217501

RESUMO

Humans interact with thousands of chemicals. This study aims to identify substances of emerging concern and in need of human health risk evaluations. Sixteen pooled human serum samples were constructed from 25 individual samples each from the National Institute of Environmental Health Sciences' Clinical Research Unit. Samples were analyzed using gas chromatography (GC) × GC/time-of-flight (TOF)-mass spectrometry (MS) in a suspect screening analysis, with follow-up confirmation analysis of 19 substances. A standard reference material blood sample was also analyzed through the confirmation process for comparison. The pools were stratified by sex (female and male) and by age (≤45 and >45). Publicly available information on potential exposure sources was aggregated to annotate presence in serum as either endogenous, food/nutrient, drug, commerce, or contaminant. Of the 544 unique substances tentatively identified by spectral matching, 472 were identified in females, while only 271 were identified in males. Surprisingly, 273 of the identified substances were found only in females. It is known that behavior and near-field environments can drive exposures, and this work demonstrates the existence of exposure sources uniquely relevant to females.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Testes Hematológicos , Feminino , Humanos , Masculino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes Hematológicos/métodos , Adulto , Pessoa de Meia-Idade
2.
Environ Sci Technol ; 57(14): 5947-5956, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36995295

RESUMO

A growing list of chemicals are approved for production and use in the United States and elsewhere, and new approaches are needed to rapidly assess the potential exposure and health hazard posed by these substances. Here, we present a high-throughput, data-driven approach that will aid in estimating occupational exposure using a database of over 1.5 million observations of chemical concentrations in U.S. workplace air samples. We fit a Bayesian hierarchical model that uses industry type and the physicochemical properties of a substance to predict the distribution of workplace air concentrations. This model substantially outperforms a null model when predicting whether a substance will be detected in an air sample, and if so at what concentration, with 75.9% classification accuracy and a root-mean-square error (RMSE) of 1.00 log10 mg m-3 when applied to a held-out test set of substances. This modeling framework can be used to predict air concentration distributions for new substances, which we demonstrate by making predictions for 5587 new substance-by-workplace-type pairs reported in the US EPA's Toxic Substances Control Act (TSCA) Chemical Data Reporting (CDR) industrial use database. It also allows for improved consideration of occupational exposure within the context of high-throughput, risk-based chemical prioritization efforts.


Assuntos
Poluentes Ocupacionais do Ar , Exposição por Inalação , Exposição Ocupacional , Teorema de Bayes , Indústrias , Exposição por Inalação/estatística & dados numéricos , Exposição Ocupacional/estatística & dados numéricos , Estados Unidos , Local de Trabalho
3.
J Expo Sci Environ Epidemiol ; 32(6): 820-832, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36435938

RESUMO

The rapid characterization of risk to humans and ecosystems from exogenous chemicals requires information on both hazard and exposure. The U.S. Environmental Protection Agency's ToxCast program and the interagency Tox21 initiative have screened thousands of chemicals in various high-throughput (HT) assay systems for in vitro bioactivity. EPA's ExpoCast program is developing complementary HT methods for characterizing the human and ecological exposures necessary to interpret HT hazard data in a real-world risk context. These new approach methodologies (NAMs) for exposure include computational and analytical tools for characterizing multiple components of the complex pathways chemicals take from their source to human and ecological receptors. Here, we analyze the landscape of exposure NAMs developed in ExpoCast in the context of various chemical lists of scientific and regulatory interest, including the ToxCast and Tox21 libraries and the Toxic Substances Control Act (TSCA) inventory. We examine the landscape of traditional and exposure NAM data covering chemical use, emission, environmental fate, toxicokinetics, and ultimately external and internal exposure. We consider new chemical descriptors, machine learning models that draw inferences from existing data, high-throughput exposure models, statistical frameworks that integrate multiple model predictions, and non-targeted analytical screening methods that generate new HT monitoring information. We demonstrate that exposure NAMs drastically improve the coverage of the chemical landscape compared to traditional approaches and recommend a set of research activities to further expand the development of HT exposure data for application to risk characterization. Continuing to develop exposure NAMs to fill priority data gaps identified here will improve the availability and defensibility of risk-based metrics for use in chemical prioritization and screening. IMPACT: This analysis describes the current state of exposure assessment-based new approach methodologies across varied chemical landscapes and provides recommendations for filling key data gaps.


Assuntos
Ecossistema , Estados Unidos , Humanos
4.
Anal Bioanal Chem ; 414(17): 4919-4933, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699740

RESUMO

Non-targeted analysis (NTA) methods are widely used for chemical discovery but seldom employed for quantitation due to a lack of robust methods to estimate chemical concentrations with confidence limits. Herein, we present and evaluate new statistical methods for quantitative NTA (qNTA) using high-resolution mass spectrometry (HRMS) data from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Experimental intensities of ENTACT analytes were observed at multiple concentrations using a semi-automated NTA workflow. Chemical concentrations and corresponding confidence limits were first estimated using traditional calibration curves. Two qNTA estimation methods were then implemented using experimental response factor (RF) data (where RF = intensity/concentration). The bounded response factor method used a non-parametric bootstrap procedure to estimate select quantiles of training set RF distributions. Quantile estimates then were applied to test set HRMS intensities to inversely estimate concentrations with confidence limits. The ionization efficiency estimation method restricted the distribution of likely RFs for each analyte using ionization efficiency predictions. Given the intended future use for chemical risk characterization, predicted upper confidence limits (protective values) were compared to known chemical concentrations. Using traditional calibration curves, 95% of upper confidence limits were within ~tenfold of the true concentrations. The error increased to ~60-fold (ESI+) and ~120-fold (ESI-) for the ionization efficiency estimation method and to ~150-fold (ESI+) and ~130-fold (ESI-) for the bounded response factor method. This work demonstrates successful implementation of confidence limit estimation strategies to support qNTA studies and marks a crucial step towards translating NTA data in a risk-based context.


Assuntos
Incerteza , Calibragem , Espectrometria de Massas/métodos
5.
Environ Sci Technol ; 55(20): 14329-14330, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609843

RESUMO

The intrinsic metabolic clearance rate (Clint) and fraction of chemical unbound in plasma (fup) serve as important parameters for high throughput toxicokinetic models, but experimental data are limited for many chemicals. Open-source quantitative structure-activity relationship (QSAR) models for both parameters were developed to offer reliable in silico predictions for a diverse set of chemicals regulated under U.S. law, including pharmaceuticals, pesticides, and industrial chemicals. As a case study to demonstrate their utility, model predictions served as inputs to the TK component of a risk-based prioritization approach based on Bioactivity: Exposure Ratios (BER), in which a BER < 1 indicates exposures are predicted to exceed a biological activity threshold. When applied to a subset of the Tox21 screening library (6631 chemicals) we found that the proportion of chemicals with BER < 1 was similar using either in silico (1337/6631; 20.16%) or in vitro (151/850; 17.76%) parameters. Further, when considering only the chemicals in the Tox21 set with in vitro data, there was a high concordance of chemicals classified with either BER < 1 or >1 using either in silico or in vitro parameters (776/850, 91.30%). Thus, the presented QSARs may be suitable for prioritizing the risk posed by many chemicals for which measured in vitro TK data are lacking.

6.
Environ Sci Technol ; 55(16): 11375-11387, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34347456

RESUMO

Recycled materials are found in many consumer products as part of a circular economy; however, the chemical content of recycled products is generally uncharacterized. A suspect screening analysis using two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS) was applied to 210 products (154 recycled, 56 virgin) across seven categories. Chemicals in products were tentatively identified using a standard spectral library or confirmed using chemical standards. A total of 918 probable chemical structures identified (112 of which were confirmed) in recycled materials versus 587 (110 confirmed) in virgin materials. Identified chemicals were characterized in terms of their functional use and structural class. Recycled paper products and construction materials contained greater numbers of chemicals than virgin products; 733 identified chemicals had greater occurrence in recycled compared to virgin materials. Products made from recycled materials contained greater numbers of fragrances, flame retardants, solvents, biocides, and dyes. The results were clustered to identify groups of chemicals potentially associated with unique chemical sources, and identified chemicals were prioritized for further study using high-throughput hazard and exposure information. While occurrence is not necessarily indicative of risk, these results can be used to inform the expansion of existing models or identify exposure pathways currently neglected in exposure assessments.


Assuntos
Retardadores de Chama , Materiais de Construção , Retardadores de Chama/análise , Cromatografia Gasosa-Espectrometria de Massas , Reciclagem
7.
Environ Health Perspect ; 129(6): 67006, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34160298

RESUMO

BACKGROUND: Chemicals in consumer products are a major contributor to human chemical coexposures. Consumers purchase and use a wide variety of products containing potentially thousands of chemicals. There is a need to identify potential real-world chemical coexposures to prioritize in vitro toxicity screening. However, due to the vast number of potential chemical combinations, this identification has been a major challenge. OBJECTIVES: We aimed to develop and implement a data-driven procedure for identifying prevalent chemical combinations to which humans are exposed through purchase and use of consumer products. METHODS: We applied frequent itemset mining to an integrated data set linking consumer product chemical ingredient data with product purchasing data from 60,000 households to identify chemical combinations resulting from co-use of consumer products. RESULTS: We identified co-occurrence patterns of chemicals over all households as well as those specific to demographic groups based on race/ethnicity, income, education, and family composition. We also identified chemicals with the highest potential for aggregate exposure by identifying chemicals occurring in multiple products used by the same household. Last, a case study of chemicals active in estrogen and androgen receptor in silico models revealed priority chemical combinations co-targeting receptors involved in important biological signaling pathways. DISCUSSION: Integration and comprehensive analysis of household purchasing data and product-chemical information provided a means to assess human near-field exposure and inform selection of chemical combinations for high-throughput screening in in vitro assays. https://doi.org/10.1289/EHP8610.


Assuntos
Qualidade de Produtos para o Consumidor , Exposição Ambiental , Simulação por Computador , Humanos
8.
Environ Sci Technol ; 55(9): 6505-6517, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33856768

RESUMO

The intrinsic metabolic clearance rate (Clint) and the fraction of the chemical unbound in plasma (fup) serve as important parameters for high-throughput toxicokinetic (TK) models, but experimental data are limited for many chemicals. Open-source quantitative structure-activity relationship (QSAR) models for both parameters were developed to offer reliable in silico predictions for a diverse set of chemicals regulated under the U.S. law, including pharmaceuticals, pesticides, and industrial chemicals. As a case study to demonstrate their utility, model predictions served as inputs to the TK component of a risk-based prioritization approach based on bioactivity/exposure ratios (BERs), in which a BER < 1 indicates that exposures are predicted to exceed a biological activity threshold. When applied to a subset of the Tox21 screening library (6484 chemicals), we found that the proportion of chemicals with BER <1 was similar using either in silico (1133/6484; 17.5%) or in vitro (148/848; 17.5%) parameters. Further, when considering only the chemicals in the Tox21 set with in vitro data, there was a high concordance of chemicals classified with either BER <1 or >1 using either in silico or in vitro parameters (767/848, 90.4%). Thus, the presented QSARs may be suitable for prioritizing the risk posed by many chemicals for which measured in vitro TK data are lacking.


Assuntos
Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Simulação por Computador , Toxicocinética
9.
Sci Total Environ ; 782: 146862, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839655

RESUMO

On September 14, 2018, Hurricane Florence delivered ~686 mm rainfall to a 106 km2 watershed in coastal North Carolina, USA. A forested land treatment site comprises one third of the watershed wherein municipal wastewater effluent is spray-irrigated onto 8.9 km2 of forest. This communication provides insight for land treatment function under excess water duress as well as changes in organic chemical composition in on- and off-site waters before (June 2018) and after (September & December 2018) Hurricane Florence's landfall. We compare the numbers and relative abundances of chemical features detected using suspect screening high resolution mass spectrometry in waste-, ground-, and surface water samples. Values for upstream and receiving waters in September were lower than for sampling events in June and December, indicating an expected dilution effect across the watershed. Chemical diversity was greatest for all surface water samples in December, but only upstream surface water showed a dramatic five-fold increase in relative chemical abundance. Chemical abundance in on-site water and downstream surface water was equal to or lower than the September storm dilution effect. These data suggest that the land treatment system is functionally and hydrologically robust to extreme storm events and contributed to dilution of upstream chemical reservoirs for downstream receiving waters for months after the storm. Similar systems may embody one water reuse strategy robust to the increasing occurrence of extreme precipitation events.

10.
Anal Bioanal Chem ; 412(20): 4931-4939, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32494915

RESUMO

Non-targeted analysis (NTA) is a rapidly evolving analytical technique with numerous opportunities to improve and expand instrumental and data analysis methods. In this work, NTA was performed on eight synthetic mixtures containing 1264 unique chemical substances from the U.S. Environmental Protection Agency's Non-Targeted Analysis Collaborative Trial (ENTACT). These mixtures were analyzed by atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) using both positive and negative polarities for a total of four modes. Out of the 1264 ENTACT chemical substances, 1116 were detected in at least one ionization mode, 185 chemicals were detected using all four ionization modes, whereas 148 were not detected. Forty-four chemicals were detected only by APCI, and 181 were detected only by ESI. Molecular descriptors and physicochemical properties were used to assess which ionization type was preferred for a given compound. One ToxPrint substructure (naphthalene group) was found to be enriched in compounds only detected using APCI, and eight ToxPrints (e.g., several alcohol moieties) were enriched in compounds only detected using ESI. Examination of physicochemical parameters for ENTACT chemicals suggests that those with higher aqueous solubility preferentially ionized by ESI-. While ESI typically detects a larger number of compounds, APCI offers chromatograms with less background, fewer co-elutions, and additional chemical space coverage, suggesting both should be considered for broader coverage in future NTA research. Graphical abstract.

11.
Toxicol In Vitro ; 66: 104855, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32278033

RESUMO

Advancements in measurement and modeling capabilities are providing unprecedented access to estimates of chemical exposure and bioactivity. With this influx of new data, there is a need for frameworks that help organize and disseminate information on chemical hazard and exposure in a manner that is accessible and transparent. A case study approach was used to demonstrate integration of the Adverse Outcome Pathway (AOP) and Aggregate Exposure Pathway (AEP) frameworks to support cumulative risk assessment of co-exposure to two phthalate esters that are ubiquitous in the environment and that are associated with disruption of male sexual development in the rat: di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP). A putative AOP was developed to guide selection of an in vitro assay for derivation of bioactivity values for DEHP and DnBP and their metabolites. AEPs for DEHP and DnBP were used to extract key exposure data as inputs for a physiologically based pharmacokinetic (PBPK) model to predict internal metabolite concentrations. These metabolite concentrations were then combined using in vitro-based relative potency factors for comparison with an internal dose metric, resulting in an estimated margin of safety of ~13,000. This case study provides an adaptable workflow for integrating exposure and toxicity data by coupling AEP and AOP frameworks and using in vitro and in silico methodologies for cumulative risk assessment.


Assuntos
Dibutilftalato , Dietilexilftalato , Exposição Ambiental/efeitos adversos , Poluentes Ambientais , Modelos Biológicos , Rotas de Resultados Adversos , Animais , Dibutilftalato/farmacocinética , Dibutilftalato/farmacologia , Dibutilftalato/toxicidade , Dietilexilftalato/farmacocinética , Dietilexilftalato/farmacologia , Dietilexilftalato/toxicidade , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/farmacologia , Poluentes Ambientais/toxicidade , Humanos , Masculino , Ratos , Desenvolvimento Sexual/efeitos dos fármacos
12.
Environ Sci Technol ; 54(1): 110-119, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822065

RESUMO

The risk to humans from chemicals in consumer products is a function of both hazard and exposure. There is an ongoing effort to quantify chemical exposure due to household articles such as furniture and building materials. Polymers and plastic materials make up a substantial portion of these articles, which may contain chemical additives such as plasticizers. When these additives are not bound to the polymer matrix, they are free to diffuse throughout it and leach or emit from the surface. We have implemented a methodology to predict plasticizer emission from polyvinyl chloride (PVC) products, based on group contribution methods that consider a free volume effect to estimate activity coefficients for chemicals in polymer-solvent solutions. Using the estimated activity coefficients, we calculate steady-state gas phase concentrations for plasticizers in equilibrium with the polymer surface (y0). The method uses only the structure of the chemical and polymer, the weight fraction, and physical-chemical properties, allowing rapid estimation of y0 at different weight fractions in PVC. Using the predicted y0 values and weight fraction data gleaned from public databases, we estimate plasticizer exposures associated with 72 PVC-containing articles using a high-throughput model. We also investigate potential exposures associated with plasticizer substitutions in these products.


Assuntos
Utensílios Domésticos , Plastificantes , Materiais de Construção , Humanos , Plásticos , Cloreto de Polivinila
13.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835285

RESUMO

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Assuntos
Biologia Computacional/métodos , Ensaios de Triagem em Larga Escala/métodos , Toxicologia/métodos , Tomada de Decisões , Humanos , Tecnologia da Informação , Medição de Risco , Toxicocinética , Estados Unidos , United States Environmental Protection Agency
14.
Environ Sci Technol ; 53(2): 719-732, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30516957

RESUMO

Prioritizing the potential risk posed to human health by chemicals requires tools that can estimate exposure from limited information. In this study, chemical structure and physicochemical properties were used to predict the probability that a chemical might be associated with any of four exposure pathways leading from sources-consumer (near-field), dietary, far-field industrial, and far-field pesticide-to the general population. The balanced accuracies of these source-based exposure pathway models range from 73 to 81%, with the error rate for identifying positive chemicals ranging from 17 to 36%. We then used exposure pathways to organize predictions from 13 different exposure models as well as other predictors of human intake rates. We created a consensus, meta-model using the Systematic Empirical Evaluation of Models framework in which the predictors of exposure were combined by pathway and weighted according to predictive ability for chemical intake rates inferred from human biomonitoring data for 114 chemicals. The consensus model yields an R2 of ∼0.8. We extrapolate to predict relevant pathway(s), median intake rate, and credible interval for 479 926 chemicals, mostly with minimal exposure information. This approach identifies 1880 chemicals for which the median population intake rates may exceed 0.1 mg/kg bodyweight/day, while there is 95% confidence that the median intake rate is below 1 µg/kg BW/day for 474572 compounds.


Assuntos
Exposição Ambiental , Praguicidas , Consenso , Dieta , Monitoramento Ambiental , Humanos , Medição de Risco
15.
Sci Total Environ ; 636: 901-909, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729507

RESUMO

The structures and physicochemical properties of chemicals are important for determining their potential toxicological effects, toxicokinetics, and route(s) of exposure. These data are needed to prioritize the risk for thousands of environmental chemicals, but experimental values are often lacking. In an attempt to efficiently fill data gaps in physicochemical property information, we generated new data for 200 structurally diverse compounds, which were rigorously selected from the USEPA ToxCast chemical library, and whose structures are available within the Distributed Structure-Searchable Toxicity Database (DSSTox). This pilot study evaluated rapid experimental methods to determine five physicochemical properties, including the log of the octanol:water partition coefficient (known as log(Kow) or logP), vapor pressure, water solubility, Henry's law constant, and the acid dissociation constant (pKa). For most compounds, experiments were successful for at least one property; log(Kow) yielded the largest return (176 values). It was determined that 77 ToxPrint structural features were enriched in chemicals with at least one measurement failure, indicating which features may have played a role in rapid method failures. To gauge consistency with traditional measurement methods, the new measurements were compared with previous measurements (where available). Since quantitative structure-activity/property relationship (QSAR/QSPR) models are used to fill gaps in physicochemical property information, 5 suites of QSPRs were evaluated for their predictive ability and chemical coverage or applicability domain of new experimental measurements. The ability to have accurate measurements of these properties will facilitate better exposure predictions in two ways: 1) direct input of these experimental measurements into exposure models; and 2) construction of QSPRs with a wider applicability domain, as their predicted physicochemical values can be used to parameterize exposure models in the absence of experimental data.


Assuntos
Modelos Químicos , Projetos Piloto , Relação Quantitativa Estrutura-Atividade , Solubilidade , Estados Unidos , United States Environmental Protection Agency , Água
16.
Environ Sci Technol ; 52(5): 3125-3135, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405058

RESUMO

A two-dimensional gas chromatography-time-of-flight/mass spectrometry (GC×GC-TOF/MS) suspect screening analysis method was used to rapidly characterize chemicals in 100 consumer products-which included formulations (e.g., shampoos, paints), articles (e.g., upholsteries, shower curtains), and foods (cereals)-and therefore supports broader efforts to prioritize chemicals based on potential human health risks. Analyses yielded 4270 unique chemical signatures across the products, with 1602 signatures tentatively identified using the National Institute of Standards and Technology 2008 spectral database. Chemical standards confirmed the presence of 119 compounds. Of the 1602 tentatively identified chemicals, 1404 were not present in a public database of known consumer product chemicals. Reported data and model predictions of chemical functional use were applied to evaluate the tentative chemical identifications. Estimated chemical concentrations were compared to manufacturer-reported values and other measured data. Chemical presence and concentration data can now be used to improve estimates of chemical exposure, and refine estimates of risk posed to human health and the environment.


Assuntos
Produtos Domésticos , Cromatografia Gasosa-Espectrometria de Massas , Humanos
17.
J Expo Sci Environ Epidemiol ; 28(3): 216-222, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29115287

RESUMO

Assessing human exposures to chemicals in consumer products requires composition information. However, comprehensive composition data for products in commerce are not generally available. Many consumer products have reported ingredient lists that are constructed using specific guidelines. A probabilistic model was developed to estimate quantitative weight fraction (WF) values that are consistent with the rank of an ingredient in the list, the number of reported ingredients, and labeling rules. The model provides the mean, median, and 95% upper and lower confidence limit WFs for ingredients of any rank in lists of any length. WFs predicted by the model compared favorably with those reported on Material Safety Data Sheets. Predictions for chemicals known to provide specific functions in products were also found to reasonably agree with reported WFs. The model was applied to a selection of publicly available ingredient lists, thereby estimating WFs for 1293 unique ingredients in 1123 products in 81 product categories. Predicted WFs, although less precise than reported values, can be estimated for large numbers of product-chemical combinations and thus provide a useful source of data for high-throughput or screening-level exposure assessments.


Assuntos
Exposição Ambiental/análise , Compostos Inorgânicos/análise , Compostos Orgânicos/análise , Rotulagem de Produtos , Medição de Risco/métodos , Qualidade de Produtos para o Consumidor , Humanos , Fichas de Dados de Segurança de Materiais , Modelos Estatísticos , Método de Monte Carlo , Estados Unidos , United States Food and Drug Administration
18.
Chemosphere ; 184: 1194-1201, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28672700

RESUMO

A few different exposure prediction tools were evaluated for use in the new in vitro-based safety assessment paradigm using di-2-ethylhexyl phthalate (DEHP) and dibutyl phthalate (DnBP) as case compounds. Daily intake of each phthalate was estimated using both high-throughput (HT) prediction models such as the HT Stochastic Human Exposure and Dose Simulation model (SHEDS-HT) and the ExpoCast heuristic model and non-HT approaches based on chemical specific exposure estimations in the environment in conjunction with human exposure factors. Reverse dosimetry was performed using a published physiologically based pharmacokinetic (PBPK) model for phthalates and their metabolites to provide a comparison point. Daily intakes of DEHP and DnBP were estimated based on the urinary concentrations of their respective monoesters, mono-2-ethylhexyl phthalate (MEHP) and monobutyl phthalate (MnBP), reported in NHANES (2011-2012). The PBPK-reverse dosimetry estimated daily intakes at the 50th and 95th percentiles were 0.68 and 9.58 µg/kg/d and 0.089 and 0.68 µg/kg/d for DEHP and DnBP, respectively. For DEHP, the estimated median from PBPK-reverse dosimetry was about 3.6-fold higher than the ExpoCast estimate (0.68 and 0.18 µg/kg/d, respectively). For DnBP, the estimated median was similar to that predicted by ExpoCast (0.089 and 0.094 µg/kg/d, respectively). The SHEDS-HT prediction of DnBP intake from consumer product pathways alone was higher at 0.67 µg/kg/d. The PBPK-reverse dosimetry-estimated median intake of DEHP and DnBP was comparable to values previously reported for US populations. These comparisons provide insights into establishing criteria for selecting appropriate exposure prediction tools for use in an integrated modeling platform to link exposure to health effects.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/toxicidade , Ácidos Ftálicos/toxicidade , Dibutilftalato , Dietilexilftalato/análogos & derivados , Meio Ambiente , Exposição Ambiental/análise , Poluentes Ambientais/análise , Humanos , Inquéritos Nutricionais , Ácidos Ftálicos/análise , Risco , Medição de Risco/métodos , Segurança
19.
Green Chem ; 19(4): 1063-1074, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30505234

RESUMO

Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional substitutes from large libraries of chemicals using machine learning based models. We collect and analyze publicly available information on the function of chemicals in consumer products or industrial processes to identify a suite of harmonized function categories suitable for modeling. We use structural and physicochemical descriptors for these chemicals to build 41 quantitative structure-use relationship (QSUR) models for harmonized function categories using random forest classification. We apply these models to screen a library of nearly 6400 chemicals with available structure information for potential functional substitutes. Using our Functional Use database (FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a probability of 80% or greater. We demonstrate the potential application of the models to high-throughput (HT) screening for "candidate alternatives" by merging the valid functional substitute classifications with hazard metrics developed from HT screening assays for bioactivity. A descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in vitro bioactivity screening assays. By applying QSURs, we were able to identify over 1600 candidate chemical alternatives. These QSURs can be rapidly applied to thousands of additional chemicals to generate HT functional use information for combination with complementary HT toxicity information for screening for greener chemical alternatives.

20.
Ann Clin Psychiatry ; 19(3): 181-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17729020

RESUMO

BACKGROUND: Obsessive-compulsive disorder (OCD) and body dysmorphic disorder (BDD) are possibly related disorders characterized by poor functioning and quality of life. However, few studies have compared these disorders in these important domains. METHODS: We compared functioning and quality of life in 210 OCD subjects, 45 BDD subjects, and 40 subjects with comorbid BDD+OCD using reliable and valid measures. RESULTS: OCD and BDD subjects had very poor scores across all measures, with no statistically significant differences between the groups. However, comorbid BDD+OCD subjects had greater impairment than OCD subjects on 11 scales/subscales, which remained significant after controlling for OCD severity. Comorbid BDD+OCD subjects had greater impairment than BDD subjects on 2 scales/subscales, which were no longer significant after controlling for BDD severity, suggesting that BDD severity may have accounted for greater morbidity in the comorbid BDD+OCD group. CONCLUSIONS: Functioning and quality of life were poor across all three groups, although individuals with comorbid BDD+OCD had greater impairment on a number of measures. It is important for clinicians to be aware that patients with these disorders--and, in particular, those with comorbid BDD and OCD--tend to have very poor functioning and quality of life across a broad range of domains.


Assuntos
Transtorno Obsessivo-Compulsivo/psicologia , Qualidade de Vida , Ajustamento Social , Comportamento Social , Transtornos Somatoformes/psicologia , Emoções , Nível de Saúde , Humanos , Entrevistas como Assunto , Estudos Longitudinais , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtornos Somatoformes/fisiopatologia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...