Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0295055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032978

RESUMO

From wellhead to burner tip, each component of the natural gas process chain has come under increased scrutiny for the presence and magnitude of methane leaks, because of the large global warming potential of methane. Top-down measures of methane emissions in urban areas are significantly greater than bottom-up estimates. Recent research suggests this disparity might in part be explained by gas leaks from one of the least understood parts of the process chain: behind the gas meter in homes and buildings. However, little research has been performed in this area and few methods and data sets exist to measure or estimate them. We develop and test a simple and widely deployable closed chamber method that can be used for quantifying indoor methane emissions with an order-of-magnitude precision which allows for screening of indoor large volume ("super-emitting") leaks. We also perform test applications of the method finding indoor leaks in 90% of the 20 Greater Boston buildings studied and indoor methane emissions between 0.02-0.51 ft3 CH4 day-1 (0.4-10.3 g CH4 day-1) with a mean of 0.14 ft3 CH4 day-1 (2.8 g CH4 day-1). Our method provides a relatively simple way to scale up indoor methane emissions data collection. Increased data may reduce uncertainty in bottom-up inventories, and can be used to find super-emitting indoor emissions which may better explain the disparity between top-down and bottom-up post-meter emissions estimates.


Assuntos
Poluentes Atmosféricos , Metano , Metano/análise , Poluentes Atmosféricos/análise , Gás Natural/análise , Boston , Coleta de Dados
3.
Environ Sci Technol ; 56(14): 10258-10268, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35762409

RESUMO

The presence of volatile organic compounds (VOCs) in unprocessed natural gas (NG) is well documented; however, the degree to which VOCs are present in NG at the point of end use is largely uncharacterized. We collected 234 whole NG samples across 69 unique residential locations across the Greater Boston metropolitan area, Massachusetts. NG samples were measured for methane (CH4), ethane (C2H6), and nonmethane VOC (NMVOC) content (including tentatively identified compounds) using commercially available USEPA analytical methods. Results revealed 296 unique NMVOC constituents in end use NG, of which 21 (or approximately 7%) were designated as hazardous air pollutants. Benzene (bootstrapped mean = 164 ppbv; SD = 16; 95% CI: 134-196) was detected in 95% of samples along with hexane (98% detection), toluene (94%), heptane (94%), and cyclohexane (89%), contributing to a mean total concentration of NMVOCs in distribution-grade NG of 6.0 ppmv (95% CI: 5.5-6.6). While total VOCs exhibited significant spatial variability, over twice as much temporal variability was observed, with a wintertime NG benzene concentration nearly eight-fold greater than summertime. By using previous NG leakage data, we estimated that 120-356 kg/yr of annual NG benzene emissions throughout Greater Boston are not currently accounted for in emissions inventories, along with an unaccounted-for indoor portion. NG-odorant content (tert-butyl mercaptan and isopropyl mercaptan) was used to estimate that a mean NG-CH4 concentration of 21.3 ppmv (95% CI: 16.7-25.9) could persist undetected in ambient air given known odor detection thresholds. This implies that indoor NG leakage may be an underappreciated source of both CH4 and associated VOCs.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Benzeno , Monitoramento Ambiental/métodos , Gás Natural
4.
Ecology ; 101(11): e03173, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32852804

RESUMO

Climate models project higher growing-season temperatures and a decline in the depth and duration of winter snowpack throughout many north temperate ecosystems over the next century. A smaller snowpack is projected to induce more frequent soil freeze/thaw cycles in winter in northern hardwood forests of the northeastern United States. We measured the combined effects of warmer growing-season soil temperatures and increased winter freeze/thaw cycles on rates of leaf-level photosynthesis and transpiration (sap flow) of red maple (Acer rubrum) trees in a northern hardwood forest at the Climate Change Across Seasons Experiment at Hubbard Brook Experimental Forest in New Hampshire. Soil temperatures were warmed 5°C above ambient temperatures during the growing season and soil freeze/thaw cycles were induced in winter to mimic the projected changes in soil temperature over the next century. Relative to reference plots, growing-season soil warming increased rates of leaf-level photosynthesis by up to 85.32 ± 4.33%, but these gains were completely offset by soil freeze/thaw cycles in winter, suggesting that increased freeze/thaw cycles in winter over the next 100 yr will reduce the effect of warming on leaf-level carbon gains. Soil warming in the growing season increased rates of transpiration per kilopascal of vapor pressure deficit (VPD) by up to 727.39 ± 0.28%, even when trees were exposed to increased frequency of soil freeze/thaw cycles in the previous winter, which could influence regional hydrology in the future. Using climate projections downscaled from the Coupled Model Intercomparison Project, we project increased rates of whole-season transpiration in these forests over the next century by 42-61%. We also project 52-77 additional days when daily air temperatures will be above the long-term average daily maximum during the growing season at Hubbard Brook. Together, these results show that projected changes in climate across both the growing season and winter are likely to cause greater rates of water uptake and have no effect on rates of leaf-level carbon uptake by trees, with potential ecosystem consequences for hydrology and carbon cycling in northern hardwood forests.


Assuntos
Ecossistema , Solo , Mudança Climática , Florestas , New Hampshire , Estações do Ano , Neve
5.
Glob Chang Biol ; 24(10): 4841-4856, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29949220

RESUMO

Changes in evapotranspiration (ET) from terrestrial ecosystems affect their water yield (WY), with considerable ecological and economic consequences. Increases in surface runoff observed over the past century have been attributed to increasing atmospheric CO2 concentrations resulting in reduced ET by terrestrial ecosystems. Here, we evaluate the water balance of a Pinus taeda (L.) forest with a broadleaf component that was exposed to atmospheric [CO2 ] enrichment (ECO2 ; +200 ppm) for over 17 years and fertilization for 6 years, monitored with hundreds of environmental and sap flux sensors on a half-hourly basis. These measurements were synthesized using a one-dimensional Richard's equation model to evaluate treatment differences in transpiration (T), evaporation (E), ET, and WY. We found that ECO2 did not create significant differences in stand T, ET, or WY under either native or enhanced soil fertility, despite a 20% and 13% increase in leaf area index, respectively. While T, ET, and WY responded to fertilization, this response was weak (<3% of mean annual precipitation). Likewise, while E responded to ECO2 in the first 7 years of the study, this effect was of negligible magnitude (<1% mean annual precipitation). Given the global range of conifers similar to P. taeda, our results imply that recent observations of increased global streamflow cannot be attributed to decreases in ET across all ecosystems, demonstrating a great need for model-data synthesis activities to incorporate our current understanding of terrestrial vegetation in global water cycle models.


Assuntos
Dióxido de Carbono/metabolismo , Florestas , Pinus taeda/metabolismo , Transpiração Vegetal , Solo/química , Água/metabolismo , Ecossistema , Folhas de Planta/fisiologia
6.
Environ Pollut ; 213: 710-716, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27023280

RESUMO

Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Gás Natural , Cidades , Gás Natural/análise
7.
Funct Plant Biol ; 42(9): 836-850, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32480726

RESUMO

Rising atmospheric [CO2] is associated with increased air temperature, and this warming may drive many rare plant species to extinction. However, to date, studies on the interactive effects of rising [CO2] and warming have focussed on just a few widely distributed plant species. Wollemi pine (Wollemia nobilis W.G.Jones, K.D.Hill, & J.M.Allen), formerly widespread in Australia, was reduced to a remnant population of fewer than 100 genetically indistinguishable individuals. Here, we examined the interactive effects of three [CO2] (290, 400 and 650ppm) and two temperature (ambient, ambient+4°C) treatments on clonally-propagated Wollemi pine grown for 17 months in glasshouses under well-watered and fertilised conditions. In general, the effects of rising [CO2] and temperature on growth and physiology were not interactive. Rising [CO2] increased shoot growth, light-saturated net photosynthetic rates (Asat) and net carbon gain. Higher net carbon gain was due to increased maximum apparent quantum yield and reduced non-photorespiratory respiration in the light, which also reduced the light compensation point. In contrast, increasing temperature reduced stem growth and Asat. Compensatory changes in mesophyll conductance and stomatal regulation suggest a narrow functional range of optimal water and CO2 flux co-regulation. These results suggest Asat and growth of the surviving genotype of Wollemi pine may continue to increase with rising [CO2], but increasing temperatures may offset these effects, and challenges to physiological and morphological controls over water and carbon trade-offs may push the remnant wild population of Wollemi pine towards extinction.

8.
Environ Sci Technol ; 48(3): 2051-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24432903

RESUMO

Pipeline safety in the United States has increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. To reduce pipeline leakage and increase consumer safety, we deployed a Picarro G2301 Cavity Ring-Down Spectrometer in a car, mapping 5893 natural gas leaks (2.5 to 88.6 ppm CH4) across 1500 road miles of Washington, DC. The δ(13)C-isotopic signatures of the methane (-38.2‰ ± 3.9‰ s.d.) and ethane (-36.5 ± 1.1 s.d.) and the CH4:C2H6 ratios (25.5 ± 8.9 s.d.) closely matched the pipeline gas (-39.0‰ and -36.2‰ for methane and ethane; 19.0 for CH4/C2H6). Emissions from four street leaks ranged from 9200 to 38,200 L CH4 day(-1) each, comparable to natural gas used by 1.7 to 7.0 homes, respectively. At 19 tested locations, 12 potentially explosive (Grade 1) methane concentrations of 50,000 to 500,000 ppm were detected in manholes. Financial incentives and targeted programs among companies, public utility commissions, and scientists to reduce leaks and replace old cast-iron pipes will improve consumer safety and air quality, save money, and lower greenhouse gas emissions.


Assuntos
Poluentes Atmosféricos/análise , Gás Natural/análise , Isótopos de Carbono , District of Columbia , Geografia , Substâncias Perigosas/análise , Metano/análise
9.
Tree Physiol ; 33(5): 475-88, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23677118

RESUMO

Climate change may alter forest composition by differentially affecting the responses of faster- and slower-growing tree species to drought. However, the combined effects of rising atmospheric CO2 concentration ([CO2]) and temperature on drought responses of trees are poorly understood. Here, we examined interactive effects of temperature (ambient, ambient + °C) and [CO2] (290, 400 and 650mu;l l(-1)) on drought responses of Eucalyptus saligna Sm. (faster-growing) and E. sideroxylon A. Cunn. ex Woolls (slower-growing) seedlings. Drought was imposed via a controlled reduction in soil water over 1-2 weeks, re-watering seedlings when leaves visibly wilted. In ambient temperature, the effect of drought on the light-saturated net photosynthetic rate (Asat) in E. saligna decreased as [CO2] increased from pre-industrial to future concentrations, but rising [CO2] did not affect the response in Eucalyptus sideroxylon. In contrast, elevated temperature exacerbated the effect of drought in reducing Asat in both species. The drought response of Asat reflected changes in stomatal conductance (gs) associated with species and treatment differences in (i) utilization of soil moisture and (ii) leaf area ratio (leaf area per unit plant dry mass). Across [CO2] and temperature treatments, E. saligna wilted at higher soil water potentials compared with E. sideroxylon. Photosynthetic recovery from drought was 90% complete 2 days following re-watering across all species and treatments. Our results suggest that E. saligna (faster-growing) seedlings are more susceptible to drought than E. sideroxylon (slower-growing) seedlings. The greater susceptibility to drought of E. saligna reflected faster drawdown of soil moisture, associated with more leaf area and leaf area ratio, and the ability of E. sideroxylon to maintain higher gs at a given soil moisture. Inclusion of a pre-industrial [CO2] treatment allowed us to conclude that susceptibility of these species to short-term drought under past and future climates may be regulated by the same mechanisms. Further, the beneficial effects of rising [CO2] and deleterious effects of elevated temperature on seedling response to drought were generally offsetting, suggesting susceptibility of seedlings of these species to short-term drought in future climates that is similar to pre-industrial and current climate conditions.


Assuntos
Dióxido de Carbono/metabolismo , Eucalyptus/fisiologia , Biomassa , Dióxido de Carbono/análise , Mudança Climática , Secas , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Plântula/fisiologia , Solo , Temperatura , Água/fisiologia
11.
Physiol Plant ; 147(4): 502-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22905764

RESUMO

Infection by eastern dwarf mistletoe (Arceuthobium pusillum) modifies needle and branch morphology and hastens white spruce (Picea glauca) mortality. We examined potential causal mechanisms and assessed the impacts of infection-induced alterations to host development and performance across scales ranging from needle hormone contents to bole expansion. Needles on infected branches (IBs) possessed higher total cytokinin (CK) and lower abscisic acid contents than needles on uninfected branches (UBs). IBs exhibited greater xylem growth than same-aged UBs, which is consistent with the promotive effect of CKs on vascular differentiation and organ sink strength. Elevated CK content may also explain the dense secondary and tertiary branching observed at the site of infection, i.e. the formation of 'witches' brooms' with significantly lower light capture efficiencies. Observed hormone perturbations were consistent with higher rates of transpiration, lower water use efficiencies (WUEs) and more negative needle carbon isotope ratios observed for IBs. Observed reductions in needle size allowed IBs to compensate for reduced hydraulic conductivity. Severe infections resulted in dramatically decreased diameter growth of the bole. It seems likely that the modifications to host hormone contents by eastern dwarf mistletoe infection led white spruce trees to dedicate a disproportionate fraction of their photoassimilate and other resources to self-shaded branches with low WUE. This would have decreased the potential for fixed carbon accumulation, generating a decline in the whole-tree resource pool. As mistletoe infections grew in size and the number of IBs increased, this burden was manifested as increasingly greater reductions in bole growth.


Assuntos
Interações Hospedeiro-Parasita , Picea/crescimento & desenvolvimento , Picea/metabolismo , Viscaceae/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Luz , Maine , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/fisiologia , Caules de Planta/fisiologia , Água
12.
Environ Pollut ; 173: 1-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174345

RESUMO

Natural gas is the largest source of anthropogenic emissions of methane (CH(4)) in the United States. To assess pipeline emissions across a major city, we mapped CH(4) leaks across all 785 road miles in the city of Boston using a cavity-ring-down mobile CH(4) analyzer. We identified 3356 CH(4) leaks with concentrations exceeding up to 15 times the global background level. Separately, we measured δ(13)CH(4) isotopic signatures from a subset of these leaks. The δ(13)CH(4) signatures (mean = -42.8‰ ± 1.3‰ s.e.; n = 32) strongly indicate a fossil fuel source rather than a biogenic source for most of the leaks; natural gas sampled across the city had average δ(13)CH(4) values of -36.8‰ (± 0.7‰ s.e., n = 10), whereas CH(4) collected from landfill sites, wetlands, and sewer systems had δ(13)CH(4) signatures ~20‰ lighter (µ = -57.8‰, ± 1.6‰ s.e., n = 8). Repairing leaky natural gas distribution systems will reduce greenhouse gas emissions, increase consumer health and safety, and save money.


Assuntos
Monitoramento Ambiental/métodos , Metano/análise , Gás Natural/análise , Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Boston , Sistemas de Informação Geográfica
13.
Tree Physiol ; 31(9): 997-1006, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21937672

RESUMO

Trees adapted to mesic and xeric habits may differ in a suite of physiological responses that affect leaf-level carbon balance, including the relationship between photosynthesis (A) and respiration at night (R(n)). Understanding the factors that regulate physiological function in mesic and xeric species is critical for predicting changes in growth and distribution under changing climates. In this study, we examined the relationship between A and R(n), and leaf traits that may regulate A and R(n), in six Eucalyptus species native to mesic or xeric ecosystems, during two 24-h cycles in a common garden under high soil moisture. Peak A and R(n) generally were higher in xeric compared with mesic species. Across species, A and R(n) covaried, correlated with leaf mass per area, leaf N per unit area and daytime soluble sugar accumulation. A also covaried with g(s), which accounted for 93% of the variation in A within species. These results suggest that A and R(n) in these six Eucalyptus species were linked through leaf N and carbohydrates. Further, the relationship between A and R(n) across species suggests that differences in this relationship between mesic and xeric Eucalyptus species in their native habitats may be largely driven by environmental factors rather than inter-specific genetic variation.


Assuntos
Eucalyptus/fisiologia , Adaptação Fisiológica , Respiração Celular/fisiologia , Ritmo Circadiano , Mudança Climática , Clima Desértico , Ecossistema , New South Wales , Fotossíntese , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Temperatura
14.
Tree Physiol ; 31(9): 945-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21712237

RESUMO

Nearly 30 years ago, Whitehead and Jarvis and Whitehead et al. postulated an elegant mechanistic explanation for the observed relationship between tree hydraulic structure and function, hypothesizing that structural adjustments promote physiological homeostasis. To date, this framework has been nearly completely overlooked with regard to varying atmospheric carbon dioxide ([CO(2)]). Here, we evaluated Whitehead's hypothesis of leaf water potential (Ψ(l)) homeostasis in faster-growing (Eucalyptus saligna) and slower-growing (Eucalyptus sideroxylon) tree saplings grown under three [CO(2)] (pre-industrial, current and future) and two temperature (ambient and ambient + 4°C) treatments. We tested for relationships between physiological (stomatal conductance and Ψ(l)) and structural (leaf and sapwood areas (A(l), A(s)), height (h), xylem conductivity (k(s))) plant variables as a function of the [CO(2)] and temperature treatments to assess whether structural variables adjusted to maintain physiological homeostasis. Structural components (A(l), A(s), h) generally increased with [CO(2)] or temperature, while g(s) was negatively correlated with [CO(2)]. Contrary to Whitehead's hypothesis, Ψ(l) did not exhibit homeostasis in either species; elevated temperatures were associated with more negative Ψ(l) in faster-growing E. saligna, and less negative Ψ(l) in slower-growing E. sideroxylon. Moreover, individual structural variables were generally uncorrelated with Ψ(l). However, across both species, the integrated hydraulic property of leaf specific hydraulic conductance (K(l)) was positively correlated with an independent calculation of K(l) determined exclusively from leaf physiological variables. These results suggest that physiological homeostasis may not apply to saplings exposed to global change drivers including [CO(2)] and temperature. Nevertheless, Whitehead et al.'s formulation identified K(l) as a sensitive measure of plant structural-physiological co-variation across species.


Assuntos
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Água/metabolismo , Transporte Biológico , Efeito Estufa , Modelos Biológicos , Fotossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas , Transpiração Vegetal , Temperatura , Xilema/metabolismo
15.
Plant Cell Environ ; 33(10): 1671-81, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20492554

RESUMO

The unabated rise in atmospheric [CO(2)] is associated with increased air temperature. Yet, few CO(2)-enrichment studies have considered pre-industrial [CO(2)] or warming. Consequently, we quantified the interactive effects of growth [CO(2)] and temperature on photosynthesis of faster-growing Eucalyptus saligna and slower-growing E. sideroxylon. Well-watered and -fertilized tree seedlings were grown in a glasshouse at three atmospheric [CO(2)] (290, 400, and 650 µL L(-1)), and ambient (26/18 °C, day/night) and high (ambient + 4 °C) air temperature. Despite differences in growth rate, both eucalypts responded similarly to [CO(2)] and temperature treatments with few interactive effects. Light-saturated photosynthesis (A(sat)) and light- and [CO(2)]-saturated photosynthesis (A(max) ) increased by ∼ 50% and ∼ 10%, respectively, with each step-increase in growth [CO(2)], underpinned by a corresponding 6-11% up-regulation of maximal electron transport rate (J(max)). Maximal carboxylation rate (V(cmax)) was not affected by growth [CO(2)]. Thermal photosynthetic acclimation occurred such that A(sat) and A(max) were similar in ambient- and high-temperature-grown plants. At high temperature, the thermal optimum of A(sat) increased by 2-7 °C across [CO(2)] treatments. These results are the first to suggest that photosynthesis of well-watered and -fertilized eucalypt seedlings will remain strongly responsive to increasing atmospheric [CO(2)] in a future, warmer climate.


Assuntos
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Fotossíntese , Atmosfera , Eucalyptus/crescimento & desenvolvimento , Temperatura Alta , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Especificidade da Espécie , Temperatura , Fatores de Tempo
16.
Tree Physiol ; 30(5): 586-96, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20332372

RESUMO

To identify environmental and biological drivers of nocturnal vapour exchange, we quantified intra-annual, intra- and inter-specific variation in nocturnal water transport among ecologically diverse Eucalyptus species. We measured sap flux (J(s)) and leaf physiology (leaf surface conductance (g(s)), transpiration (E) and water potential (Psi(l))) in three to five trees of eight species. Over 1 year, nocturnal J(s) (J(s,n)) contributed 5-7% of total J(s) in the eight species. The principal environmental driver of J(s,n) was the product of atmospheric vapour pressure deficit (D) and wind speed (U). Selected observations suggest that trees with higher proportions of young foliage may exhibit greater J(s,n) and nocturnal g(s) (g(s,n)). Compared with other tree taxa, nocturnal water use in Eucalyptus was relatively low and more variable within than between species, suggesting that (i) Eucalyptus as a group exerts strong nocturnal stomatal control over water loss and (ii) prediction of nocturnal flux in Eucalyptus may depend on simultaneous knowledge of intra-specific tree traits and nocturnal atmospheric conditions.


Assuntos
Eucalyptus/classificação , Eucalyptus/fisiologia , Água/metabolismo , Transporte Biológico/fisiologia , Ritmo Circadiano , Folhas de Planta/fisiologia , Especificidade da Espécie
17.
J Exp Bot ; 60(1): 249-55, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19022910

RESUMO

Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.


Assuntos
Bombacaceae/fisiologia , Modelos Biológicos , Transpiração Vegetal , Água/metabolismo , Vento
18.
J Integr Plant Biol ; 50(11): 1355-64, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19017123

RESUMO

Atmospheric carbon dioxide [CO2] has increased dramatically within the current life spans of long-lived trees and old forests. Consider that a 500-year-old tree in the early twenty-first century has spent 70% of its life growing under pre-industrial levels of [CO2], which were 30% lower than current levels. Here we address the question of whether old trees have already responded to the rapid rise in [CO2] occurring over the past 150 years. In spite of limited data, aging trees have been shown to possess a substantial capacity for increased net growth after a period of post-maturity growth decline. Observations of renewed growth and physiological function in old trees have, in some instances, coincided with Industrial Age increases in key environmental resources, including [CO2], suggesting the potential for continued growth in old trees as a function of continued global climate change.


Assuntos
Dióxido de Carbono/toxicidade , Clima , Árvores/efeitos dos fármacos , Árvores/crescimento & desenvolvimento , Ecossistema , Monitoramento Ambiental , Fatores de Tempo
19.
Tree Physiol ; 28(9): 1341-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18595846

RESUMO

Eastern hemlock (Tsuga canadensis (L). Carr.) is a late-successional species found across the northeastern United States of America that is currently threatened by the exotic pest, hemlock woolly adelgid (Adelges tsugae Annand). Because whole-tree physiological characteristics may scale to influence ecosystem processes, we considered whole-tree hydraulic controls in eastern hemlock and the replacement species black birch (Betula lenta L.). Through a series of misting perturbations, whole-tree resistances (R), capacitances (C) and time constants (tau) were determined from time series sap flux data in eastern hemlock and black birch. Black birch trees responded more rapidly to environmental perturbations than eastern hemlock. Utilizing the step function after applied treatments, whole-tree tau ranged between 9.4 and 24.8 min in eastern hemlock trees compared with 5.9 to 10.5 min in black birch. Species was not a significant predictor of R or C when controlling for tree size. In both species, R decreased with sapwood area and C increased. Our tau results indicate that the loss and replacement of eastern hemlock by black birch will decrease the lag between transpiration and absorption of water from the soil and potentially alter the diurnal pattern of carbon and water uptake.


Assuntos
Betula/fisiologia , Ecossistema , Tsuga/fisiologia , Água/fisiologia , Fenômenos Biofísicos , Biofísica , Massachusetts , Fatores de Tempo
20.
Tree Physiol ; 28(4): 615-27, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18244947

RESUMO

Water use and carbon exchange of a red oak-dominated (Quercus rubra L.) forest and an eastern hemlock-dominated (Tsuga canadensis L.) forest, each located within the Harvard Forest in north-central Massachusetts, were measured for 2 years by the eddy flux method. Water use by the red oak forest reached 4 mm day(-1), compared to a maximum of 2 mm day(-1) by the eastern hemlock forest. Maximal carbon (C) uptake rate was also higher in the red oak forest than in the eastern hemlock forest (about 25 versus 15 micromol m(-2) s(-1)). Sap flux measurements indicated that transpiration of red oak, and also of black birch (Betula lenta L.), which frequently replaces eastern hemlock killed by hemlock woolly adelgid (Adelges tsugae Annand.), were almost twice that of eastern hemlock. Despite the difference between species in maximum summertime C assimilation rate, annual C storage of the eastern hemlock forest almost equaled that of the red oak forest because of net C uptake by eastern hemlock during unusually warm fall and spring weather, and a near-zero C balance during the winter. Thus, the effect on C storage of replacing eastern hemlock forest with a forest dominated by deciduous species is unclear. Carbon storage by eastern hemlock forests during fall, winter and spring is likely to increase in the event of climate warming, although this may be offset by C loss during hotter summers. Our results indicate that, although forest water use will decrease immediately following eastern hemlock mortality due to the hemlock woolly adelgid, the replacement of eastern hemlock by deciduous species such as red oak will likely increase summertime water use over current rates in areas where hemlock is a major forest species.


Assuntos
Carbono/metabolismo , Ecossistema , Hemípteros/fisiologia , Quercus/parasitologia , Árvores/fisiologia , Tsuga/parasitologia , Água/metabolismo , Animais , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Geografia , Luz , Modelos Biológicos , Fotossíntese/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Quercus/fisiologia , Quercus/efeitos da radiação , Chuva , Análise de Regressão , Tsuga/fisiologia , Tsuga/efeitos da radiação , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...