Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583726

RESUMO

KCa2.1-3 Ca2+-activated K+-channels (SK) require calmodulin to gate in response to cellular Ca2+. A model for SK gating proposes that the N-terminal domain (N-lobe) of calmodulin is required for activation, but an immobile C-terminal domain (C-lobe) has constitutive, Ca2+-independent binding. Although structures support a domain-driven hypothesis of SK gate activation by calmodulin, only a partial understanding is possible without measuring both channel activity and protein binding. We measured SK2 (KCa2.2) activity using inside-out patch recordings. Currents from calmodulin-disrupted SK2 channels can be restored with exogenously applied calmodulin. We find that SK2 activity only approaches full activation with full-length calmodulin with both an N- and a C-lobe. We measured calmodulin binding to a C-terminal SK peptide (SKp) using both composition-gradient multi-angle light-scattering and tryptophan emission spectra. Isolated lobes bind to SKp with high affinity, but isolated lobes do not rescue SK2 activity. Consistent with earlier models, N-lobe binding to SKp is stronger in Ca2+, and C-lobe-binding affinity is strong independent of Ca2+. However, a native tryptophan in SKp is sensitive to Ca2+ binding to both the N- and C-lobes of calmodulin at Ca2+ concentrations that activate SK2, demonstrating that the C-lobe interaction with SKp changes with Ca2+. Our peptide-binding data and electrophysiology show that SK gating models need deeper scrutiny. We suggest that the Ca2+-dependent associations of both lobes of calmodulin to SKp are crucial events during gating. Additional investigations are necessary to complete a mechanistic gating model consistent with binding, physiology, and structure.


Assuntos
Cálcio , Calmodulina , Calmodulina/metabolismo , Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Triptofano/metabolismo , Sinalização do Cálcio , Cálcio da Dieta
2.
J Pharmacol Exp Ther ; 367(2): 282-290, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158242

RESUMO

Alcohol is a widely used and abused substance. A major unresolved issue in the alcohol research field is determining which of the many alcohol target proteins identified to date is responsible for shaping each specific alcohol-related behavior. The large-conductance, calcium- and voltage-activated potassium channel (BK channel) is a conserved target of ethanol. Genetic manipulation of the highly conserved BKα channel influences alcohol-related behaviors across phylogenetically diverse species that include worm, fly, mouse, and man. A pharmacological tool that prevents alcohol's action at a single target, like the BK channel, would complement genetic approaches in the quest to define the behavioral consequences of alcohol at each target. To identify agents that specifically modulate the action of ethanol at the BK channel, we executed a high-throughput phagemid-display screen in combination with a Caenorhabditis elegans behavioral genetics assay. This screen selected a novel nonapeptide, LS10, which moderated acute ethanol intoxication in a BK channel-humanized C. elegans strain without altering basal behavior. LS10's action in vivo was dependent upon BK channel functional activity. Single-channel electrophysiological recordings in vitro showed that preincubation with a submicromolar concentration of LS10 restricted ethanol-induced changes in human BKα channel gating. In contrast, no substantial changes in basal human BKα channel function were observed after LS10 application. The results obtained with the LS10 peptide provide proof-of-concept evidence that a combined phagemid-display/behavioral genetics screening approach can provide novel tools for understanding the action of alcohol at the BK channel and how this, in turn, exerts influence over central nervous system function.


Assuntos
Etanol/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Peptídeos/metabolismo , Alcoolismo/metabolismo , Animais , Caenorhabditis elegans , Linhagem Celular , Células HEK293 , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Xenopus
3.
Neuropharmacology ; 75: 286-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973295

RESUMO

Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1ß and α2ß glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation.


Assuntos
Receptores de Glicina/metabolismo , Taurina/farmacologia , Oligoelementos/farmacologia , Zinco/farmacologia , Análise de Variância , Animais , Biofísica , Depressores do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Etanol/farmacologia , Glicina/farmacologia , Isoflurano/farmacologia , Microinjeções , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...