Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 3(12)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29925682

RESUMO

IgG antibodies are abundantly present in the vasculature but to a much lesser extent in mucosal tissues. This contrasts with antibodies of the IgA and IgM isotype that are present at high concentration in mucosal secretions due to active delivery by the polymeric Ig receptor (pIgR). IgG is the preferred isotype for therapeutic mAb development due to its long serum half-life and robust Fc-mediated effector function, and it is utilized to treat a diverse array of diseases with antigen targets located in the vasculature, serosa, and mucosa. As therapeutic IgG antibodies targeting the luminal side of mucosal tissue lack an active transport delivery mechanism, we sought to generate IgG antibodies that could be transported via pIgR, similarly to dimeric IgA and pentameric IgM. We show that an anti-Pseudomonas aeruginosa IgG fused with pIgR-binding peptides gained the ability to transcytose and be secreted via pIgR. Consistent with these results, pIgR-binding IgG antibodies exhibit enhanced localization to the bronchoalveolar space when compared with the parental IgG antibody. Furthermore, pIgR-binding mAbs maintained Fc-mediated functional activity and promoted enhanced survival compared with the parental mAb in a P. aeruginosa acute pneumonia model. Our results suggest that increasing IgG accumulation at mucosal surfaces by pIgR-mediated active transport can improve the efficacy of therapeutic mAbs that act at these sites.


Assuntos
Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Mucosa/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Transporte Biológico/imunologia , Células CHO , Cricetulus , Cães , Imunoglobulina A/imunologia , Imunoglobulina M/imunologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Mucosa/microbiologia , Receptores de Imunoglobulina Polimérica , Componente Secretório , Transcitose/imunologia
2.
Cancer Gene Ther ; 11(8): 555-69, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15232601

RESUMO

A potentially promising treatment of metastatic cancer is the systemic delivery of oncolytic adenoviruses. This requires engineering viruses which selectively replicate in tumors. We have constructed such an oncolytic adenovirus, OAS403, in which two early region genes are under the control of tumor-selective promoters that play a role in two key pathways involved in tumorigenesis. The early region E1A is controlled by the promoter for the E2F-1 gene, a transcription factor that primarily upregulates genes for cell growth. The E4 region is under control of the promoter for human telomerase reverse transcriptase, a gene upregulated in most cancer cells. OAS403 was evaluated in vitro on a panel of human cells and found to elicit tumor-selective cell killing. Also, OAS403 was less toxic in human hepatocyte cultures, as well as in vivo when compared to an oncolytic virus that lacked selective E4 control. A single intravenous injection of 3 x 10(12) vp/kg in a Hep3B xenograft mouse tumor model led to significant antitumor efficacy. Additionally, systemic administration in a pre-established LNCaP prostate tumor model resulted in over 80% complete tumor regressions at a tolerable dose. Vector genome copy number was measured in tumors and livers at various times following tail vein injection and showed a selective time-dependent increase in tumors but not livers over 29 days. Furthermore, efficacy was significantly improved when OAS403 treatment was combined with doxorubicin. This virus holds promise for the treatment of a broad range of human cancers including metastatic disease.


Assuntos
Adenoviridae/genética , Neoplasias/terapia , Adenoviridae/metabolismo , Animais , Proteínas de Ligação a DNA , Doxorrubicina/uso terapêutico , Vetores Genéticos/administração & dosagem , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Injeções , Camundongos , Camundongos SCID , Metástase Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Telomerase/genética , Telomerase/metabolismo , Replicação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...