Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168910

RESUMO

MAPK-activated protein kinase 2 (MK2) has diverse roles in cancer. In response to chemotherapy, MK2 inhibition is synthetically lethal to p53-deficiency. While TP53 deletion is rare in glioblastomas, these tumors often carry TP53 mutations. Here, we show that MK2 inhibition strongly attenuated glioblastoma cell proliferation through p53wt stabilization and senescence. The senescence-inducing efficacy of MK2 inhibition was particularly strong when cells were co-treated with the standard-of-care temozolomide. However, MK2 inhibition also increased the stability of p53 mutants and enhanced the proliferation of p53-mutant stem cells. These observations reveal that in response to DNA damaging chemotherapy, targeting MK2 in p53-mutated cells produces a phenotype that is distinct from the p53-deficient phenotype. Thus, MK2 represents a novel drug target in 70% glioblastomas harboring intact TP53 gene. However, targeting MK2 in tumors with TP53 mutations may accelerate disease progression. These findings are highly relevant since TP53 mutations occur in over 50% of all cancers.

2.
ACS Med Chem Lett ; 8(4): 395-400, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28435525

RESUMO

Photoremovable protecting groups added to bioactive molecules provide spatial and temporal control of the biological effects. We present synthesis and characterization of the first photoactivatable small-molecule tubulin inhibitor. By blocking the pharmacophoric OH group on compound 1 with photoremovable 4,5-dimethoxy-2-nitrobenzyl moiety we developed the photocaged prodrug 2 that had no effect in biological assays. Short UV light exposure of the derivative 2 or UV-irradiation of cells treated with 2 resulted in fast and potent inhibition of tubulin polymerization, attenuation of cell viability, and apoptotic cell death, implicating release of the parent active compound. This study validates for the first time the photoactivatable prodrug concept in the field of small molecule tubulin inhibitors. The caged derivative 2 represents a novel tool in antitubulin approaches.

3.
J Med Chem ; 60(5): 2052-2070, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28206758

RESUMO

The DYRK family contains kinases that are up-regulated in malignancy and control several cancer hallmarks. To assess the anticancer potential of inhibitors targeting DYRK kinases, we developed a series of novel DYRK inhibitors based on the 7-azaindole scaffold. All compounds were tested for their ability to inhibit DYRK1A, DYRK1B, DYRK2, and the structurally related CLK1. The library was screened for anticancer efficacy in established and stem cell-like glioblastoma cell lines. The most potent inhibitors (IC50 ≤ 50 nM) significantly decreased viability, clonogenic survival, migration, and invasion of glioblastoma cells. Target engagement was confirmed with genetic knockdown and the cellular thermal shift assay. We demonstrate that DYRK1A's thermal stability in cells is increased upon compound treatment, confirming binding in cells. In summary, we present synthesis, structure-activity relationship, and efficacy in glioblastoma-relevant models for a library of novel 7-azaindoles.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Proteínas Quinases/metabolismo , Tirosina/metabolismo , Humanos , Fosforilação , Relação Estrutura-Atividade
4.
Biochem Pharmacol ; 98(4): 587-601, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519552

RESUMO

We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.


Assuntos
Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Transdução de Sinais/fisiologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Moduladores de Tubulina/química
5.
Eur J Med Chem ; 95: 29-34, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25791676

RESUMO

LRRK2IN1 is a highly potent inhibitor of leucine-rich repeat kinase 2 (LRRK2, IC50 = 7.9 nM), an established target for treatment of Parkinson's disease. Two LRRK2IN1 analogues 1 and 2 were synthesised which retained LRRK2 inhibitory activity (1: IC50 = 72 nM; 2: IC50 = 51 nM), were predicted to have improved bioavailability and were efficacious in cell-based models of neuroinflammation. Analogue 1 inhibited IL-6 secretion from LPS-stimulated primary human microglia with EC50 = 4.26 µM. In order to further optimize the molecular properties of LRRK2IN1, a library of truncated analogues was designed based on docking studies. Despite lacking LRRK2 inhibitory activity, these compounds show anti-neuroinflammatory efficacy at micromolar concentration. The compounds developed were valuable tools in establishing a cell-based assay for assessing anti-neuroinflammatory efficacy of LRRK2 inhibitors. Herein, we present data that IL-1ß stimulated U87 glioma cell line is a reliable model for neuroinflammation, as data obtained in this model were consistent with results obtained using primary human microglia and astrocytes.


Assuntos
Anti-Inflamatórios/farmacologia , Benzodiazepinonas/farmacologia , Glioma/tratamento farmacológico , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Anti-Inflamatórios/química , Benzodiazepinonas/química , Células Cultivadas , Glioma/enzimologia , Glioma/patologia , Humanos , Inflamação/enzimologia , Inflamação/patologia , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microglia/citologia , Microglia/enzimologia , Modelos Biológicos , Pirimidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...