Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 152, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631436

RESUMO

We recently identified HAPSTR1 (C16orf72) as a key component in a novel pathway which regulates the cellular response to molecular stressors, such as DNA damage, nutrient scarcity, and protein misfolding. Here, we identify a functional paralog to HAPSTR1: HAPSTR2. HAPSTR2 formed early in mammalian evolution, via genomic integration of a reverse transcribed HAPSTR1 transcript, and has since been preserved under purifying selection. HAPSTR2, expressed primarily in neural and germline tissues and a subset of cancers, retains established biochemical features of HAPSTR1 to achieve two functions. In normal physiology, HAPSTR2 directly interacts with HAPSTR1, markedly augmenting HAPSTR1 protein stability in a manner independent from HAPSTR1's canonical E3 ligase, HUWE1. Alternatively, in the context of HAPSTR1 loss, HAPSTR2 expression is sufficient to buffer stress signaling and resilience. Thus, we discover a mammalian retrogene which safeguards fitness.


Assuntos
Estresse Fisiológico , Ubiquitina-Proteína Ligases , Animais , Dano ao DNA/genética , Mamíferos/genética , Mamíferos/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(41): e2122676119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191185

RESUMO

Designing entirely new protein structures remains challenging because we do not fully understand the biophysical determinants of folding stability. Yet, some protein folds are easier to design than others. Previous work identified the 43-residue ɑßßɑ fold as especially challenging: The best designs had only a 2% success rate, compared to 39 to 87% success for other simple folds [G. J. Rocklin et al., Science 357, 168-175 (2017)]. This suggested the ɑßßɑ fold would be a useful model system for gaining a deeper understanding of folding stability determinants and for testing new protein design methods. Here, we designed over 10,000 new ɑßßɑ proteins and found over 3,000 of them to fold into stable structures using a high-throughput protease-based assay. NMR, hydrogen-deuterium exchange, circular dichroism, deep mutational scanning, and scrambled sequence control experiments indicated that our stable designs fold into their designed ɑßßɑ structures with exceptional stability for their small size. Our large dataset enabled us to quantify the influence of universal stability determinants including nonpolar burial, helix capping, and buried unsatisfied polar atoms, as well as stability determinants unique to the ɑßßɑ topology. Our work demonstrates how large-scale design and test cycles can solve challenging design problems while illuminating the biophysical determinants of folding.


Assuntos
Dobramento de Proteína , Proteínas , Sequência de Aminoácidos , Dicroísmo Circular , Deutério , Peptídeo Hidrolases , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/genética
3.
Proc Natl Acad Sci U S A ; 119(27): e2111262119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776542

RESUMO

All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.


Assuntos
Dano ao DNA , Aptidão Genética , Proteínas Nucleares , Estresse Fisiológico , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Sequência Conservada , Dano ao DNA/genética , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Transdução de Sinais/genética , Estresse Fisiológico/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
J Med Chem ; 62(11): 5404-5413, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31083990

RESUMO

Activation of the IRE-1/XBP-1 pathway has been linked to many human diseases. We report a novel fluorescent tricyclic chromenone inhibitor, D-F07, in which we incorporated a 9-methoxy group onto the chromenone core to enhance its potency and masked the aldehyde to achieve long-term efficacy. Protection of the aldehyde as a 1,3-dioxane acetal led to strong fluorescence emitted by the coumarin chromophore, enabling D-F07 to be tracked inside the cell. We installed a photolabile structural cage on the hydroxy group of D-F07 to generate PC-D-F07. Such a modification significantly stabilized the 1,3-dioxane acetal protecting group, allowing for specific stimulus-mediated control of inhibitory activity. Upon photoactivation, the re-exposed hydroxy group on D-F07 triggered the aldehyde-protecting 1,3-dioxane acetal to slowly decompose, leading to the inhibition of the RNase activity of IRE-1. Our novel findings will also allow for spatiotemporal control of the inhibitory effect of other salicylaldehyde-based compounds currently in development.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Ribonucleases/antagonistas & inibidores , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...