Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 166(Pt 1): 130-141, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27068793

RESUMO

The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Urânio/metabolismo , Bactérias/classificação , Bactérias/genética , Poluentes Radioativos/metabolismo , Urânio/análise
2.
Environ Pollut ; 214: 114-123, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27070846

RESUMO

The Diffusive Gradients in Thin Films (DGT) technique using PIWBA resin (The Dow Chemical Company) was developed and validated for the measurement of uranium (U) concentration in natural and uranium mining influenced waters. The U uptake on the PIWBA resin gel was 97.3 ± 0.4% (batch method; Vsol = 5 mL; [U] = 20 µg L(-1); 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be HNO3conc/70 °C with an elution efficiency of 88.9 ± 1.4%. The laboratory DGT investigation demonstrated that the PIWBA resin gel exhibits a very good performance across a wide range of pH (3-9) and ionic strength (0.001-0.7 M NaNO3) at different time intervals. Neither effect of PO4(3-) (up to 1.72 × 10(-4) M), nor of HCO3(-) (up to 8.20 × 10(-3) M) on the quantitative measurement of uranium by DGT-PIWBA method were observed. Only at very high Ca(2+) (2.66 × 10(-4) M), and SO4(2-) (5.55 × 10(-4) M) concentration, the U uptake on DGT-PIWBA was appreciably lessened. In-situ DGT field evaluation was carried out in the vicinity of three former uranium mining sites in France (Loire-Atlantique and Herault departments), which employ different water treatment technologies and have different natural geochemical characteristics. There was a similar or inferior U uptake on DGT-Chelex(®)-100 in comparison with the U accumulation on a DGT-PIWBA sampler. Most likely, the performance of Chelex(®)-100 was negatively affected by a highly complex matrix of mining waters. The high concentration and identity of co-accumulating analytes, typical for the mining environment, did not have a substantial impact on the quantitative uptake of labile U species on DGT- PIWBA. The use of the polyphenol impregnated anion exchange resin leads to a significant advancement in the application and development of the DGT technique for determination of U in the vicinity of the former uranium mining sites.


Assuntos
Monitoramento Ambiental/métodos , Urânio/análise , Poluentes Químicos da Água/análise , Água/análise , França , Mineração
3.
Chemosphere ; 155: 142-151, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27108372

RESUMO

The Diffusive Gradients in Thin films (DGT) technique was used to analyse U, (226)Ra and other trace metals in stream water and soil porewater in a wetland in France impacted by uranium mining. High resolution profiles of metals in soil porewater obtained by DGT could be measured for the first time up to a depth of 75 cm by the construction of a novel DGT holder. In stream water, the DGT technique was compared to speciation carried out by filtration (0.45 µm) and ultrafiltration (UF) (500 kDa/100 kDa/10 kDa) and DGT porewater profiles were compared with piezometer data obtained in a parallel study. An increase in the trace concentrations of dissolved (0.45 µm) and particulate U, (226)Ra, and elements such as Al, Fe, Mn and Ba was observed in the stream water as it passes through the bog as a results of mobilization from the wetland. The porewater results indicate DGT labile metals species to be present in porewater and mobilization of uranium and other elements linked to the presence of enriched clays. In stream water, colloids and particles govern the behavior of U, Al and Fe, whereas Mn, Ba and Ra are essentially transported as truly dissolved metal species with DGT labile concentrations accounting for 100% of the dissolved fraction. The combined approaches of DGT and UF allow us to obtain a better understanding on the biogeochemical processes involved in the retention and mobility of U and (226)Ra in the wetland.


Assuntos
Monitoramento Ambiental/métodos , Mineração , Radioisótopos/química , Oligoelementos/química , Urânio/química , Áreas Alagadas , Coloides/análise , França , Solo/química , Ultrafiltração , Água/análise , Poluentes Químicos da Água/química , Poluentes Radioativos da Água/química
4.
Anal Chim Acta ; 913: 94-103, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26944993

RESUMO

The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 µm, 0.2 µm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool.


Assuntos
Mineração , Ultrafiltração/métodos , Urânio/classificação , Difusão , Modelos Teóricos , Água
5.
Sci Total Environ ; 545-546: 340-52, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26747998

RESUMO

This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings.


Assuntos
Monitoramento Ambiental , Mineração , Poluentes Radioativos do Solo/análise , Urânio/análise , Níger , Imagens de Satélites
6.
Anal Chim Acta ; 889: 71-81, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26343428

RESUMO

A new resin- Diphonix(®) in Diffusive Gradients in Thin Films (DGT) technique for the determination of uranium was investigated and compared with previously used binding phases for uranium, Chelex(®)-100 and Metsorb™. The DGT gel preparation and the elution procedure were optimized for the new resin. The U uptake on Diphonix(®) resin gel was 97.4 ± 1.5% (batch method; [U] = 20 µg L(-1); 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be 1 M 1-hydroxyethane-1, 1-diphosphonic acid (HEDPA) with an elution efficiency of 80 ± 4.2%. Laboratory DGT study on U accumulation using a DGT samplers with Diphonix(®) resin showed a very good performance across a wide range of pH (3-9) and ionic strength (0.001-0.7 M NaNO3). Diffusion coefficients of uranium at different pH were determined using both, a diffusion cell and the DGT time-series, demonstrating the necessity of the implementation of the effective diffusion coefficients into U-DGT calculations. Diphonix(®) resin gel exhibits greater U capacity than Chelex(®)-100 and Metsorb™ binding phase gels (a Diphonix(®) gel disc is not saturated, even with loading of 10.5 µmol U). Possible interferences with Ca(2+) (up to 1.33 × 10(-2) M), PO4(3-) (up to 1.72 × 10(-4) M), SO4(2-) (up to 4.44 × 10(-3) M) and HCO3(-) (up to 8.20 × 10(-3) M) on U-DGT uptake ([U] = 20 µg L(-1)) were investigated. No effect or minor effect of Ca(2+), PO4(3-), SO4(2-), and HCO3(-) on the quantitative measurement of U by Diphonix(®)-DGT was observed. The results of this study demonstrated the DGT technique with Diphonix(®) resin is a reliable and robust method for the measurement of labile uranium species under laboratory conditions.

7.
J Environ Radioact ; 137: 105-112, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25036918

RESUMO

The radioactivities of (238)U and (226)Ra in mill tailings from the U mines of COMINAK and SOMAÏR in Niger were measured and quantified using a portable High-Purity Germanium (HPGe) detector. The (238)U and (226)Ra activities were measured under field conditions on drilling cores with 600s measurements and without any sample preparation. Field results were compared with those obtained by Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and emanometry techniques. This comparison indicates that gamma-ray absorption by such geological samples does not cause significant deviations. This work shows the feasibility of using portable HPGe detector in the field as a preliminary method to observe variations of radionuclides concentration with the aim of identifying samples of interest. The HPGe is particularly useful for samples with strong secular disequilibrium such as mill tailings.


Assuntos
Monitoramento de Radiação/métodos , Resíduos Radioativos/análise , Rádio (Elemento)/análise , Espectrofotometria Atômica/métodos , Urânio/análise , Mineração , Níger
8.
Environ Sci Technol ; 48(17): 10062-70, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25050937

RESUMO

Wetlands often act as sinks for uranium and other trace elements. Our previous work at a mining-impacted wetland in France showed that a labile noncrystalline U(IV) species consisting of U(IV) bound to Al-P-Fe-Si aggregates was predominant in the soil at locations exhibiting a U-containing clay-rich layer within the top 30 cm. Additionally, in the porewater, the association of U(IV) with Fe(II) and organic matter colloids significantly increased U(IV) mobility in the wetland. In the present study, within the same wetland, we further demonstrate that the speciation of U at a location not impacted by the clay-rich layer is a different noncrystalline U(IV) species, consisting of U(IV) bound to organic matter in soil. We also show that the clay-poor location includes an abundant sulfate supply and active microbial sulfate reduction that induce substantial pyrite (FeS2) precipitation. As a result, Fe(II) concentrations in the porewater are much lower than those at clay-impacted zones. U porewater concentrations (0.02-0.26 µM) are also considerably lower than those at the clay-impacted locations (0.21-3.4 µM) resulting in minimal U mobility. In both cases, soil-associated U represents more than 99% of U in the wetland. We conclude that the low U mobility reported at clay-poor locations is due to the limited association of Fe(II) with organic matter colloids in porewater and/or higher stability of the noncrystalline U(IV) species in soil at those locations.


Assuntos
Mineração , Urânio/análise , Urânio/química , Áreas Alagadas , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Coloides/química , França , Ferro/metabolismo , Microscopia Eletrônica de Transmissão , Minerais/análise , Minerais/química , Porosidade , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/química , Sulfatos/metabolismo , Água/análise , Água/química
9.
Nat Commun ; 4: 2942, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24346245

RESUMO

Tetravalent uranium is commonly assumed to form insoluble species, resulting in the immobilization of uranium under reducing conditions. Here we present the first report of mobile U(IV)-bearing colloids in the environment, bringing into question this common assumption. We investigate the mobility of uranium in a mining-impacted wetland in France harbouring uranium concentrations of up to 14,000 p.p.m. As an apparent release of uranium into the stream passing through the wetland was observable, we examine soil and porewater composition as a function of depth to assess the geochemical conditions leading to this release. The analyses show the presence of U(IV) in soil as a non-crystalline species bound to amorphous Al-P-Fe-Si aggregates, and in porewater, as a distinct species associated with Fe and organic matter colloids. These results demonstrate the lability of U(IV) in these soils and its association with mobile porewater colloids that are ultimately released into surface water.


Assuntos
Coloides/química , Mineração , Compostos de Urânio/química , Poluentes Radioativos da Água/química , Áreas Alagadas , França , Rios/química , Solo/química , Poluentes Radioativos do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...