Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; : e202400166, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664856

RESUMO

In this study, we demonstrate the influence of crystallinity and morphology on the analytical performance of various Cu2MoS4 (CMS) nanocatalysts-based electrochemical sensors for the high-efficiency detection of Ofloxacin (OFX) antibiotic. The electrochemical kinetics parameters including peak current response (ΔIp), peak-to-peak separation (ΔEp), electrochemically active surface area (ECSA), electron-transfer resistance (Rct), were obtained through the electrochemical analyses, which indicate the single-crystalline nature of CMS nanomaterials (NMs) is beneficial for enhanced electron-transfer kinetics. The morphological features and the electrochemical results for OFX detection substantiate that by tuning the tube-like to plate-like structures of the CMS NMs, it might noticeably enhance multiple adsorption sites and more intrinsic active catalytic sites due to the diffusion of analytes into the interstitial spaces between CMS nanoplates. As results, highly single-crystalline and plate-shaped morphology structures of CMS NMs would significantly enhance the electrocatalytic OFX oxidation in terms of onset potential (Eonset), Tafel slope, catalytic rate constant (kcat), and adsorption capacity (Γ). The CMS NMs-based electrochemical sensing platform showed excellent analytical performance toward the OFX detection with two ultra-wide linear detection concentration ranges from 0.25-100 and 100-1000 µM, a low detection limit of 0.058 µM, and an excellent electrochemical sensitivity (0.743 µA µM-1 cm-2).

2.
ACS Omega ; 9(7): 7976-7985, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405533

RESUMO

The adsorption and degradation capacities of dichlorodiphenyltrichloroethane (DDT) on a photocatalyst composed of TiO2 supported on the mesoporous material MCM-41 (TiO2/MCM-41) were investigated using density functional theory and real-time density functional theory methods. The van der Waals interactions within the PBE functional were adjusted by using the Grimme approach. The adsorption of DDT was evaluated through analyses involving adsorption energy, Hirshfeld atomic charges, Wiberg bond orders, molecular electrostatic potential, noncovalent interaction analysis, and bond path analysis. The findings reveal that DDT undergoes physical adsorption on pristine MCM-41 or MCM-41 modified with Al or Fe due to the very small bond order (only about 0.15-0.18) as well as the change in total charge of DDT after adsorption is close to 0. However, it chemically adsorbs onto the TiO2/MCM-41 composite through the formation of Ti···Cl coordination bonds because the maximum bond order is very large, about 1.0 (it can be considered as a single bond). The adsorption process is significantly influenced by van der Waals interactions (accounting for approximately 30-40% of the interaction energy), hydrogen bonding, and halogen bonding. MCM-41 is demonstrated to concurrently function as a support for the TiO2 photocatalyst, creating a synergistic effect that enhances the photocatalytic activity of TiO2. Based on the computational results, a novel photocatalytic mechanism for the degradation of DDT on the TiO2/MCM-41 catalyst system was proposed.

3.
Bull Environ Contam Toxicol ; 111(4): 46, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733101

RESUMO

This study assessed the methylene blue adsorption using natural and modified mussel shell powders in the aqueous solution. The mussel shell samples were processed in a NaClO solution then modified with sodium dodecyl sulfate and ethylenediaminetetraacetic acid. The characteristics of mussel shell samples before and after modification were demonstrated using infared spectroscopy, thermogravimetric analysis, scanning electron microscopy, nitrogen adsorption/desorption, energy dispersive X-ray, water contact angle, and dynamic light scattering methods. Some factors such as the pH of the medium, adsorption temperature, and adsorption time had a significant effect on the methylene blue adsorption of mussel shell samples. The adsorption isotherm models and kinetics of methylene blue adsorption by mussel shell samples were also studied. A quadratic regression equation was selected with experimental planning following the Box-Behnken model combined with Design Expert 11.1.0.1 software to optimize the methylene blue adsorption process by mussel shell samples. These results open a promising direction for using naturally derived materials to remove organic pollutants from contaminated water.


Assuntos
Bivalves , Azul de Metileno , Animais , Adsorção , Cinética , Termodinâmica , Água
4.
Pak J Biol Sci ; 25(4): 289-295, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35638522

RESUMO

<b>Background and Objective:</b> Basil (<i>Ocimum basilicum</i> L.), an aromatic herb, is considered one of the most important crops with essential oils as well as other bioactive compounds. Basil leaves have tremendous pharmaceutical benefits and are used for foods. Slow-release fertilizers have been developed to optimize the fertilization of crops. This work aims to discover the effect of NPK Slow-Release Fertilizer Coated by Starch (NPK-SRFS) at different rates on growth, yield and essential oil components of basil grown on the field in Northern Vietnam. <b>Materials and Methods:</b> Basil seedlings, sown from seeds, were used as plant materials. NPK-SRFS was stocked in the Faculty of Chemistry, Hanoi Pedagogical University 2. The experiments were designed in a fully randomized block model, consisting of four treatments with different rates of NPK-SRFS. Each treatment had three replicates with an area of 8 m<sup>2</sup>. Duncan's Multiple Range Test was being used for statistical analysis (p = 0.05). <b>Results:</b> All 3 NPK-SRFS treatments significantly increased the number of buds and leaves per plant compared to the control. However, NPK-SRFS at different rates affected diversely plant height and leaf area of the basil. F5.0 and F10 treatments accelerated chlorophyll content as well as Fv/Fm value in comparison with none NPK-SRFS treatment. The application of NPK-SRFS at different rates caused slightly different changes in basil essential oil composition, especially the content of Methyl Chavicol, the most abundant oxygenated monoterpene and α-trans-Bergamotene, the most abundant sesquiterpene hydrocarbon. <b>Conclusion:</b> The present study provides further insight into the influence of NPK-SRFS on the growth, yield and essential oil components of basil.


Assuntos
Ocimum basilicum , Óleos Voláteis , Fertilizantes , Humanos , Monoterpenos , Ocimum basilicum/química , Óleos Voláteis/química , Amido
5.
J Anal Methods Chem ; 2021: 6641326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136305

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), the family of organic contaminations, have been shown to have negative effects on human health. However, until now, the comprehension on occurrence, distribution, and risk assessment of human exposure to PAHs has been limited in Vietnam. In this work, a capillary gas chromatography coupled with electron impact ionization tandem mass spectrometry (GC-EI-MS/MS) has been introduced for analysis of 16 PAHs in some particulate matter samples. PAHs have been separated on the TG 5 ms capillary gas chromatographic column and detected by tandem mass spectrometry in multiple reaction monitoring mode. The PAHs in the particulate matter (PM 2.5 and PM 10) samples were extracted by ultrasonic-assisted liquid extraction and cleaned up by an acidic silica gel solid phase extraction. The linearity range of all analyzed PAHs was from 5 to 2000 ng mL-1 with R 2 ≥0.9990. Limit of detection (LOD) of PAHs in particulate matter sample was from 0.001 ng m-3 (Br-Naph) to 0.276 ng m-3 (Fln). The recovery of PAHs was investigated by international proficiency testing samples. The recoveries of PAHs in proficiency testing sample ranged from 79.3% (Chr) to 109.8% (IcdP). The in-house validated GC-EI-MS/MS method was then applied to analysis of some particulate matter samples that were collected in the Hanoi areas. The total concentrations of PAHs in several brands of samples collected from Hanoi were found in the range of 226.3 ng m-3-706.43 ng m-3. Among the studied compounds, naphthalene was found at high frequency and ranged from 106.5 ng m-3 to 631.1 ng m-3. The main distribution of the PAHs in particulate matter samples was two-ring and three-ring compounds.

6.
J Chromatogr A ; 1649: 462188, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34034108

RESUMO

A new green method for trace level quantification of four herbicides, glyphosate (GLYP), glufosinate (GLUF), and their main metabolites, aminomethylphosphonic acid (AMPA) and 3-(methyl-phosphinico)-propionic acid (MPPA), was developed. The purification step without any derivatization was conducted by solid-phase extraction using Chelex-100 resin in the Fe (III) form, followed by elution with 5% NH4OH. The four analytes were quantified by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. The developed extraction method was validated on five fresh and sea water matrices with mean recoveries ranging from 80.1% to 109.4% (relative standard deviation < 20%). The extraction conditions were evaluated and certified for the high applicability of the extraction method too. The limits of detection (ng/L) in the five water matrices were in ranges 0.70 - 4.0, 2.4 - 3.9, 1.8 - 4.7, and 1.6 - 4.0 for GLYP, AMPA, GLUF, and MPPA, respectively. The method was successfully applied to detect the four compounds in surface waters sampled along the Red River Delta region in July 2019. The highest concentrations were detected at 565, 1,330, 234, and 871 ng/L for GLYP, AMPA, GLUF, and MPPA, respectively. These results showed the potential capacity of this new method for convenient monitoring of herbicides and their metabolites in the diverse natural water system.


Assuntos
Aminobutiratos/isolamento & purificação , Glicina/análogos & derivados , Organofosfonatos/isolamento & purificação , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/isolamento & purificação , Aminobutiratos/análise , Cromatografia Líquida de Alta Pressão , Água Doce/química , Glicina/análise , Glicina/isolamento & purificação , Herbicidas/análise , Herbicidas/isolamento & purificação , Organofosfonatos/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Glifosato
7.
J Anal Methods Chem ; 2021: 6628285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505763

RESUMO

In this study, an analytical method for the simultaneous determination of 7 major pharmaceutical residues in Vietnam, namely, carbamazepine, ciprofloxacin, ofloxacin, ketoprofen, paracetamol, sulfamethoxazole, and trimethoprim, in surface water and hospital wastewater has been developed. The method includes enrichment and clean-up steps by solid phase extraction using mix-mode cation exchange, followed by identification and quantification using an ultrahigh-performance liquid chromatography and tandem mass spectrometry and employing electrospray ionization (UPLC-ESI-MS/MS). Seven target compounds were separated on the reversed phase column and detected in multiple reaction monitoring (MRM) mode within 6 minutes. The present study also optimized the operating parameters of the mass spectrometer to achieve the highest analytical signals for all target compounds. All characteristic parameters of the analytical method were investigated, including linearity range, limit of detection, limit of quantification, precision, and accuracy. The important parameter in UPLC-ESI-MS/MS, matrix effect, was assessed and implemented via preextraction and postextraction spiking experiments. The overall recoveries of all target compounds were in the ranges from 55% to 109% and 56 % to 115% for surface water and hospital wastewater, respectively. Detection limits for surface water and hospital wastewater were 0.005-0.015 µg L-1 and 0.014-0.123 µg L-1, respectively. The sensitivity of the developed method was allowed for determination of target compounds at trace level in environmental water samples. The in-house validation of the developed method was performed by spiking experiment in both the surface water and hospital wastewater matrix. The method was then applied to analyze several surface water and hospital wastewater samples taken from West Lake and some hospitals in Vietnam, where the level of these pharmaceutical product residues was still missed. Sulfamethoxazole was present at a high detection frequency in both surface water (33% of analyzed samples) and hospital wastewater (81% of analyzed samples) samples.

8.
J Anal Methods Chem ; 2019: 3489634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205797

RESUMO

An ultrahigh-performance liquid chromatography in combination with high-resolution mass spectrometry Thermo Q-Extractive Focus Orbitrap MS has been introduced for analysis of multiclass pesticides in vegetable samples collected in Hanoi, Vietnam. Multiclass pesticides were separated on the Thermo Hypersil Gold PFP column utilizing a gradient of the mobile phase consisting of 5 mM ammonium formate, 0.1% formic acid in deionized water, and methanol. The target analytes were detected in the full-scan mode on Thermo Scientific Q-Exactive Focus Orbitrap MS for quantitation at the optimum operating conditions. These conditions included, but not limit to, the resolution of 70000 at the full width at half maximum in both positive and negative mode, mass range from 80 to 1000 m/z, and optimized parameters for the heated electrospray ionization source. The identification of the analytes in real samples was based on retention times, mass to charge ratios, mass accuracies, and MS/MS spectra at the confirmation mode with the inclusion list of target analytes. The mass accuracies of target analytes were from -4.14 ppm (dinotefuran) to 1.42 ppm (cinosulfuron) in the neat solvent and from -3.91 ppm (spinosad D) to 1.29 ppm (cinosulfuron) in the matrix-matched solution. Target analytes in the vegetable-based matrix were extracted by the QuEChERS method. Some critical parameters of the analytical method such as linearity, repeatability, limit of detection, and limit of quantitation have been evaluated and implemented. Excellent LOD and LOQ of the developed method were achieved at the range of 0.04-0.85 and 0.13-2.9 µg·kg-1, respectively. Intraday and interday repeatability of the analytical signal (peak area, n=6) of the developed method were below 3% and 10%, correspondingly. The matrix effect, extraction recovery, and overall recovery were fully investigated by spiking experiments. Experimental results demonstrated that the ionization suppression or enhancement was the main contribution on the overall recoveries of target analytes. Finally, the in-house validated method was applied to pesticides screening in vegetables samples in local villages in Hanoi, Vietnam. The concentrations of all target analytes were below limit of quantitation and lower than US-FDA or EU maximum residue levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...