Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 12(35): 8460-8464, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34449227

RESUMO

Ion pairing is commonly considered as a culprit for the reduced ionic conductivity in polymer electrolyte systems. However, this simple thermodynamic picture should not be taken literally, as ion pairing is a dynamical phenomenon. Here we construct model poly(ethylene oxide)-bis(trifluoromethane)sulfonimide lithium salt systems with different degrees of ion pairing by tuning the solvent polarity and examine the relation between the cation-anion distinct conductivity σ+-d and the lifetime of ion pairs τ+- using molecular dynamics simulations. It is found that there exist two distinct regimes where σ+-d scales with 1/τ+- and τ+-, respectively, and the latter is a signature of longer-lived ion pairs that contribute negatively to the total ionic conductivity. This suggests that ion pairs are kinetically different depending on the solvent polarity, which renders the ion-pair lifetime highly important when discussing its effect on ion transport in polymer electrolyte systems.

2.
Sci Rep ; 10(1): 2656, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060398

RESUMO

Functional reassessment of the phosphate-specific chemosensors revealed their potential as arsenate detectors. A series of dipicolylamine (Dpa)-ZnII chemosensors were screened, among which acridine Dpa-ZnII chemosensor showed the highest capability in sensing arsenate. The presence of excess ZnII improved sensitivity and strengthened the binding between acridine Dpa-ZnII complex to arsenate as well as phosphate. However, due to their response to phosphate, these sensors are not suited for arsenate detection when phosphate is also present. This study demonstrated for the first time that rare-earth elements could effectively mask phosphate, allowing the specific fluorescence detection of arsenate in phosphate-arsenate coexisting systems. In addition, detection of arsenate contamination in the real river water samples and soil samples was performed to prove its practical use. This sensor was further employed for the visualization of arsenate and phosphate uptake in vegetables and flowering plants for the first time, as well as in the evaluation of a potent inhibitor of arsenate/phosphate uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA