Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; : e2404357, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727713

RESUMO

Linear gold complexes of the "carbene-metal-amide" (CMA) type are prepared with a rigid benzoguanidine amide donor and various carbene ligands. These complexes emit in the deep-blue range at 424 and 466 nm with 100% quantum yields in all media. The deep-blue thermally activates delayed fluorescence originates from a charge transfer state with an excited state lifetime as low as 213 ns, resulting in fast radiative rates of 4.7 × 106 s-1. The high thermal and photo-stability of these carbene-metal-amide (CMA) materials enabled the authors to fabricate highly energy-efficient organic light-emitting diodes (OLED) in host-guest architectures. Deep-blue OLED devices with electroluminescence at 416 and 457 nm with practical external quantum efficiencies of up to 23% at 100 cd m-2 with excellent color coordinates CIE (x; y) = 0.16; 0.07 and 0.17; 0.18 are reported. The operating stability of these OLEDs is the longest reported to date (LT50 = 1 h) for deep-blue CMA emitters, indicating a high promise for further development of blue OLED devices. These findings inform the molecular design strategy and correlation between delayed luminescence with high radiative rates and CMA OLED device operating stability.

2.
Beilstein J Org Chem ; 19: 1289-1298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701304

RESUMO

Organic thermally activated delayed fluorescence (TADF) materials have been widely investigated due to their impressive electronic properties and applied potential for the third generation of organic light-emitting diodes (OLED). We present organic TADF material (4BGIPN) based on the strained benzoguanidine donor and compare it with the benchmark carbazole-based material (4CzIPN). Extended π-conjugation in 4BGIPN material results in yellow-green luminescence at 512 nm with a fast radiative rate of 5.5 × 10-5 s-1 and a photoluminescence quantum yield of 46% in methylcyclohexane solution. Such a nitrogen-rich 4BGIPN material has a significantly stabilized highest occupied molecular orbital (HOMO) at -6.4 eV while the lowest unoccupied molecular orbital (LUMO) at -4.0 eV, indicating potential suitability for application as the electron transport layer or TADF class III emitter in OLEDs.

3.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298874

RESUMO

Gold-centered carbene-metal-amides (CMAs) containing cyclic (alkyl)(amino)carbenes (CAACs) are promising emitters for thermally activated delayed fluorescence (TADF). Aiming at the design and optimization of new TADF emitters, we report a density functional theory study of over 60 CMAs with various CAAC ligands, systematically evaluating computed parameters in relation to photoluminescence properties. The CMA structures were primarily selected based on experimental synthesis prospects. We demonstrate that TADF efficiency of the CMA materials originates from a compromise between oscillator strength coefficients and exchange energy (ΔEST). The latter is governed by the overlap of HOMO and LUMO orbitals, where HOMO is localized on the amide and LUMO over the Au-carbene bond. The S0 ground and excited T1 states of the CMAs adopt approximately coplanar geometry of carbene and amide ligands, but rotate perpendicular in the excited S1 states, resulting in degeneracy or near-degeneracy of S1 and T1, accompanied by a decrease in the S1-S0 oscillator strength from its maximum at coplanar geometries to near zero at rotated geometries. Based on the computations, promising new TADF emitters are proposed and synthesized. Bright CMA complex (Et2CAAC)Au(carbazolide) is obtained and fully characterized in order to demonstrate that excellent stability and high radiative rates up to 106 s-1 can be obtained for the gold-CMA complexes with small CAAC-carbene ligands.


Assuntos
Amidas , Ouro , Fluorescência , Ligantes
4.
Front Chem ; 10: 1008658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688032

RESUMO

The molecular design of metal-free organic phosphors is essential for realizing persistent room-temperature phosphorescence (pRTP) despite its spin-forbidden nature. A series of halobenzonitrile-carbazoles has been prepared following a one-pot nucleophilic substitution protocol involving commercially available and laboratory-synthesized carbazoles. We demonstrate how halo- and cyano-substituents affect the molecular geometry in the crystal lattice, resulting in tilt and/or twist of the carbazole with respect to the phenyl moiety. Compounds obtained from the commercially available carbazole result in efficient pRTP of organic phosphors with a high quantum yield of up to 22% and a long excited state lifetime of up to 0.22 s. Compounds obtained from the laboratory-synthesized carbazole exhibit thermally activated delayed fluorescence with an excited state lifetime in the millisecond range. In-depth photophysical studies reveal that luminescence originates from the mixed locally excited state (3LE, nπ*)/charge transfer state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...