Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
2.
Antioxidants (Basel) ; 12(12)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38136214

RESUMO

Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been shown to be a negative regulator of osteoclast differentiation, but the precise mechanisms have not yet been established. We examined the precise roles of Nrf2 in regulating antioxidants and reactive oxygen species (ROS) levels, especially the cytoplasmic and mitochondrial ROS during osteoclastogenesis in vitro. In the current study, we found that the absence of Nrf2 promotes osteoclast differentiation in bone-marrow-derived macrophages (BMMs) and RAW 264.7 cells. The receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) significantly lowered the levels of Nrf2 and its downstream antioxidant enzymes at mRNA and/or protein levels during osteoclast differentiation in the BMMs of mice and RAW 264.7 mouse leukemic monocytes. Compared to the wild-type cells, Nrf2-deficient cells exhibited heightened sensitivity to both transient RANKL-induced cytoplasmic ROS and prolonged RANKL and M-CSF-induced cytoplasmic and mitochondrial ROS accumulation. Furthermore, exogenous antioxidant agents, including N-acetyl-cysteine (NAC), diphenyleneiodonium chloride (DPI), and mitoquinone mesylate (MitoQ), exhibited substantial capability to suppress the elevation of ROS levels during osteoclast differentiation induced by Nrf2 deficiency, and they consequently inhibited osteoclast differentiation augmented by the lack of Nrf2. The activation of phosphorylated c-FOS resulting from elevated ROS promoted osteoclast differentiation. The inhibition of c-FOS blocked osteoclast differentiation, which was elevated by Nrf2-deficiency. Taken together, these data reveal that Nrf2 effectively decreased the accumulation of intracellular ROS and the phosphorylation of c-FOS during osteoclastic differentiation by regulating antioxidant enzymes and subsequently inhibited RANKL-induced osteoclast differentiation.

3.
Redox Biol ; 67: 102879, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716088

RESUMO

Brown adipose tissue (BAT) is a major site of non-shivering thermogenesis in mammals and plays an important role in energy homeostasis. Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as Nrf1), a master regulator of cellular metabolic homeostasis and numerous stress responses, has been found to function as a critical driver in BAT thermogenic adaption to cold or obesity by providing proteometabolic quality control. Our recent studies using adipocyte-specific Nfe2l1 knockout [Nfe2l1(f)-KO] mice demonstrated that NFE2L1-dependent transcription of lipolytic genes is crucial for white adipose tissue (WAT) homeostasis and plasticity. In the present study, we found that Nfe2l1(f)-KO mice develop an age-dependent whitening and shrinking of BAT, with signatures of down-regulation of proteasome, impaired mitochondrial function, reduced thermogenesis, pro-inflammation, and elevated regulatory cell death (RCD). Mechanistic studies revealed that deficiency of Nfe2l1 in brown adipocytes (BAC) primarily results in down-regulation of lipolytic genes, which decelerates lipolysis, making BAC unable to fuel thermogenesis. These changes lead to BAC hypertrophy, inflammation-associated RCD, and consequently cold intolerance. Single-nucleus RNA-sequencing of BAT reveals that deficiency of Nfe2l1 induces significant transcriptomic changes leading to aberrant expression of a variety of genes involved in lipid metabolism, proteasome, mitochondrial stress, inflammatory responses, and inflammation-related RCD in distinct subpopulations of BAC. Taken together, our study demonstrated that NFE2L1 serves as a vital transcriptional regulator that controls the lipid metabolic homeostasis in BAC, which in turn determines the metabolic dynamics, cellular heterogeneity and subsequently cell fates in BAT.


Assuntos
Tecido Adiposo Marrom , Complexo de Endopeptidases do Proteassoma , Animais , Camundongos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/metabolismo , Mamíferos/genética , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA , Termogênese/genética
4.
Food Chem Toxicol ; 178: 113875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37286028

RESUMO

Environmental cadmium (Cd) exposure is a serious public health concern, as the kidney is the primary target for Cd exposure. The present study aimed to investigate the role and underlying mechanisms of nuclear factor erythroid-derived 2-like 2 (Nrf2) in renal fibrosis induced by chronic Cd exposure. Nrf2 knockout (Nrf2-KO) mice and their wild-type littermates (Nrf2-WT) were exposed to 100 or 200 ppm Cd in drinking water for up to 16 or 24 weeks. Following the Cd exposures, Nrf2-KO mice showed elevated urinary neutrophil gelatinase-associated lipocalin (NGAL) and BUN levels compared to Nrf2-WT mice. Masson's trichrome staining and expression of fibrosis-associated proteins revealed that more severe renal fibrosis occurred in Nrf2-KO than that in Nrf2-WT mice. Renal Cd content in the Nrf2-KO mice exposed to 200 ppm Cd was lower than that in Nrf2-WT mice, which might be a consequence of the severe renal fibrosis in the Nrf2-KO mice. Mechanistic studies showed that Nrf2-KO mice exhibited higher levels of oxidative damage, lower antioxidant levels, and more regulated cell death, apoptosis in particular, than those in Nrf2-WT mice caused by Cd exposure. In conclusion, Nrf2-KO mice were more prone to develop renal fibrosis induced by chronic Cd exposure, partially due to a weakened antioxidant, detoxification capacity and increased oxidative damage.


Assuntos
Cádmio , Nefropatias , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Antioxidantes/metabolismo , Cádmio/toxicidade , Fibrose/induzido quimicamente , Nefropatias/induzido quimicamente , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
5.
Int J Biol Sci ; 19(6): 1713-1730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063427

RESUMO

BAP31 expression was robustly decreased in obese white adipose tissue (WAT). To investigate the roles of BAP31 in lipid metabolism, adipocyte-specific conditional knockout mice (BAP31-ASKO) were generated. BAP31-ASKO mice grow normally as controls, but exhibited reduced lipid accumulation in WAT. Histomorphometric analysis reported increased adipocyte size in BAP31-ASKO mice. Mouse embryonic fibroblasts (MEFs) were induced to differentiation to adipocytes, showed reduced induction of adipogenic markers and attenuated adipogenesis in BAP31-deficient MEFs. BAP31-deficiency inhibited fasting-induced PKA signaling activation and the fasting response. ß3-adrenergic receptor agonist-induced lipolysis also was reduced, accompanied by reduced free-fatty acids and glycerol release, and impaired agonist-induced lipolysis from primary adipocytes and adipose explants. BAP31 interacts with Perilipin1 via C-terminal cytoplasmic portion on lipid droplets (LDs) surface. Depletion of BAP31 repressed Perilipin1 proteasomal degradation, enhanced Perilipin1 expression and blocked LDs degradation, which promoted LDs abnormal growth and supersized LDs formation, resulted in adipocyte expansion, thus impaired insulin signaling and aggravated pro-inflammation in WAT. BAP31-deficiency increased phosphatidylcholine/phosphatidylethanolamine ratio, long chain triglycerides and most phospholipids contents. Overall, BAP31-deficiency inhibited adipogenesis and lipid accumulation in WAT, decreased LDs degradation and promoted LDs abnormal growth, pointing the critical roles in modulating LDs dynamics and homeostasis via proteasomal degradation system in adipocytes.


Assuntos
Adipogenia , Lipólise , Animais , Camundongos , Adipogenia/genética , Fibroblastos/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise/genética , Obesidade/metabolismo , Triglicerídeos/metabolismo , Perilipina-1/metabolismo
6.
Front Genet ; 14: 1144903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113990

RESUMO

Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.

7.
Ecotoxicol Environ Saf ; 254: 114702, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950983

RESUMO

The influence of air pollution on human health has sparked widespread concerns across the world. Previously, we found that exposure to ambient fine particulate matter (PM2.5) in our "real-ambient exposure" system can result in reduced lung function. However, the mechanism of organ-specific toxicity is still not fully elucidated. The balance of the microbiome contributes to maintaining lung and gut health, but the changes in the microbiome under PM2.5 exposure are not fully understood. Recently, crosstalk between nuclear factor E2-related factor 2 (Nrf2) and the microbiome was reported. However, it is unclear whether Nrf2 affects the lung and gut microbiomes under PM2.5 exposure. In this study, wild-type (WT) and Nrf2-/- (KO) mice were exposed to filtered air (FA) and real ambient PM2.5 (PM) in the " real-ambient exposure" system to examine changes in the lung and gut microbiomes. Here, our data suggested microbiome dysbiosis in lung and gut of KO mice under PM2.5 exposure, and Nrf2 ameliorated the microbiome disorder. Our study demonstrated the detrimental impacts of PM2.5 on the lung and gut microbiome by inhaled exposure to air pollution and supported the protective role of Nrf2 in maintaining microbiome homeostasis under PM2.5 exposure.


Assuntos
Poluentes Atmosféricos , Microbioma Gastrointestinal , Material Particulado , Animais , Humanos , Camundongos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Pulmão/química , Fator 2 Relacionado a NF-E2/genética , Material Particulado/toxicidade
8.
Antioxidants (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671034

RESUMO

The term "cytokine storm" describes an acute pathophysiologic state of the immune system characterized by a burst of cytokine release, systemic inflammatory response, and multiple organ failure, which are crucial determinants of many disease outcomes. In light of the complexity of cytokine storms, specific strategies are needed to prevent and alleviate their occurrence and deterioration. Nuclear factor erythroid 2-related factor 2 (NRF2) is a CNC-basic region-leucine zipper protein that serves as a master transcription factor in maintaining cellular redox homeostasis by orchestrating the expression of many antioxidant and phase II detoxification enzymes. Given that inflammatory response is intertwined with oxidative stress, it is reasonable to assume that NRF2 activation limits inflammation and thus cytokine storms. As NRF2 can mitigate inflammation at many levels, it has emerged as a potential target to prevent and treat cytokine storms. In this review, we summarized the cytokine storms caused by different etiologies and the rationale of interventions, focusing mainly on NRF2 as a potential therapeutic target.

10.
J Hazard Mater ; 445: 130459, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36463740

RESUMO

Developmental arsenic exposure leads to increased susceptibility to liver diseases including nonalcoholic fatty liver diseases, but the mechanism is incompletely understood. In this study, C57BL/6J mice were used to establish a lifetime arsenic exposure model covering developmental stage. We found that arsenic-exposed offspring in later life showed hepatic lipid deposition and increased triglyceride content. Despite no significant hepatic pathological changes in the offspring at weaning, 86 miRNAs and 136 mRNAs were differentially expressed according to miRNA array and mRNA sequencing. The differentially expressed genes (DEGs) were crossed with the target genes predicted by differentially expressed miRNAs (DEMs), and 47 differentially expressed target genes (DETGs) were obtained. Functional annotation suggested that lipid metabolism related pathways were significantly enriched. The pivotal regulator in the four major pathways to maintain liver lipid homeostasis were further determined, with significant alterations found in FABP5, SREBP1, ACOX1 and EHHADH. Of note, miRNA-mRNA integration analysis revealed that miR-7118-5p, miR-7050-5p, miR-27a/b-3p, and miR-103-3p acted as key regulators of fatty acid metabolism genes. Taken together, miRNA-mRNA integration analysis indicates that the lipid metabolism pathway in the liver of weaned mice was dysregulated by developmental arsenic exposure, which may contribute to the development of NAFLD in later life.


Assuntos
Arsênio , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Metabolismo dos Lipídeos/genética , Arsênio/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipídeos
11.
Cell Death Dis ; 13(11): 957, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379914

RESUMO

Inflammation is an important factor in the progression from acute kidney injury (AKI) to chronic kidney disease (CKD). The role of interleukin (IL)-18 in this progression has not been examined. We aimed to clarify whether and how IL-18 limits this progression. In a folic acid induced renal injury mouse model, we studied the time course of kidney injury and renal IL-18 expression. In wild-type mice following injection, renal IL-18 expression increased. In parallel, we characterized other processes, including at day 2, renal tubular necroptosis assessed by receptor-interacting serine/threonine-protein kinase1 (RIPK1) and RIPK3; at day 14, transdifferentiation (assessed by transforming growth factor ß1, vimentin and E-cadherin); and at day 30, fibrosis (assessed by collagen 1). In IL-18 knockout mice given folate, compared to wild-type mice, tubular damage and necroptosis, transdifferentiation, and renal fibrosis were attenuated. Importantly, IL-18 deletion decreased numbers of renal M1 macrophages and M1 macrophage cytokine levels at day 14, and reduced M2 macrophages numbers and macrophage cytokine expression at day 30. In HK-2 cells, IL-18 knockdown attenuated necroptosis, transdifferentiating and fibrosis.In patients with tubulointerstitial nephritis, IL-18 protein expression was increased on renal biopsies using immunohistochemistry. We conclude that genetic IL-18 deficiency ameliorates renal tubular damage, necroptosis, cell transdifferentiation, and fibrosis. The renoprotective role of IL-18 deletion in the progression from AKI to fibrosis may be mediated by reducing a switch in predominance from M1 to profibrotic M2 macrophages during the process of kidney repair.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Camundongos , Animais , Interleucina-18/genética , Interleucina-18/metabolismo , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Fibrose
12.
Oxid Med Cell Longev ; 2022: 2769487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267809

RESUMO

Recent studies have focused on nuclear-encoded circular RNAs (circRNAs) in kidney diseases, but little is known about mitochondrial circRNAs. Differentially expressed circRNAs were analyzed by RNA deep sequencing from lupus nephritis (LN) biopsies and normal human kidneys. In LN renal biopsies, the most downregulated circRNA was circMTND5, which is encoded in the mitochondrial genome. We quantitated circMTND5 by qPCR and localized by fluorescence in situ hybridization (FISH). Mitochondrial abnormalities were identified by electron microscopy. The expression of mitochondrial genes was decreased, and the expression of profibrotic genes was increased on qPCR and immunostaining. RNA binding sites for MIR6812 and circMTND5 were predicted. MIR6812 expression was increased by FISH and qPCR. In HK-2 cells and its mitochondrial fraction, the role of circMTND5 sponging MIR6812 was assessed by their colocalization in mitochondria on FISH, RNA immunoprecipitation, and RNA pulldown coupled with luciferase reporter assay. circMTND5 knockdown upregulated MIR6812, decreased mitochondrial functional gene expression, and increased profibrotic gene expression. Overexpression of circMTND5 reversed these effects in hTGF-ß stimulated HK-2 cells. Similar effects were observed in HK-2 cells with overexpression and with knockdown of MIR6812. We conclude that circMTND5 alleviates renal mitochondrial injury and kidney fibrosis by sponging MIR6812 in LN.


Assuntos
Nefropatias , Nefrite Lúpica , MicroRNAs , RNA Circular , Humanos , Fibrose , Hibridização in Situ Fluorescente , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , RNA Circular/genética
13.
Toxicol Appl Pharmacol ; 454: 116243, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115658

RESUMO

The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.


Assuntos
Elementos de Resposta Antioxidante , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Descoberta de Drogas , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes , Estresse Oxidativo , Xenobióticos/toxicidade
14.
Front Immunol ; 13: 913007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990680

RESUMO

Renal interstitial fibrosis (RIF) is a common pathological feature contributing to chronic injury and maladaptive repair following acute kidney injury. Currently, there is no effective therapy for RIF. We have reported that locked nuclear acid (LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In the present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic acid-induced RIF mice by regulating this pathway and by reducing pro-inflammatory M1/M2 macrophage polarization. We found that renal miR-150 was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-anti-miR-150 alleviated the degree of RIF, as shown by periodic acid-Schiff and Masson staining and by the expression of pro-fibrotic proteins, including alpha-smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated, and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages as well as their secreted cytokines were increased in RIF mice compared to control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150 attenuated the renal infiltration of total macrophages and pro-inflammatory subsets, including M1 macrophages expressing CD11c and M2 macrophages expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/STAT1 pathway.


Assuntos
Nefropatias , MicroRNAs , Animais , Antagomirs/farmacologia , Citocinas/metabolismo , Fibrose , Ácido Fólico/farmacologia , Humanos , Nefropatias/patologia , Macrófagos/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
15.
Invest Ophthalmol Vis Sci ; 63(9): 30, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-36036912

RESUMO

Purpose: Tight junctions (TJs) form the structural basis of retinal pigment epithelium (RPE) barrier functions. Although oxidative stress contributes to age-related macular degeneration, it is unclear how RPE TJ integrity is controlled by redox balance. In this study, we investigated the protective roles of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor, and heme oxygenase-1 (HO1), a heme-degrading enzyme encoded by the NRF2 target gene HMOX1. Methods: ARPE19 cell cultures and mice, including wild-type, Nrf2-/-, and RPE-specific NRF2-deficient mice, were treated with chemicals that impose oxidative stress or impact heme metabolism. In addition, NRF2 and HO1 expression in ARPE19 cells was knocked down by siRNA. TJ integrity was examined by anti-zonula occludens-1 staining of cultured cells or flatmount RPE tissues from mice. RPE barrier functions were evaluated by transepithelium electrical resistance in ARPE19 cells and immunofluorescence staining for albumin or dextran in eye histological sections. Results: TJ structures and RPE barrier functions were compromised due to oxidant exposure and NRF2 deficiency but were rescued by HO1 inducer. Furthermore, treatment with HO1 inhibitor or heme precursor is destructive to TJ structures and RPE barrier properties. Interestingly, both NRF2 and HO1 were upregulated under oxidative stress, probably as an adaptive response to mitigate oxidant-inflicted damages. Conclusions: Our data indicate that the NRF2-HO1 axis protects TJ integrity and RPE barrier functions by driving heme degradation.


Assuntos
Fator 2 Relacionado a NF-E2 , Epitélio Pigmentado da Retina , Animais , Heme/metabolismo , Heme/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Oxidantes/farmacologia , Estresse Oxidativo/fisiologia , Epitélio Pigmentado da Retina/patologia
16.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806011

RESUMO

Lead (Pb) is a common metal, which can be toxic to the human body via the pollution of water or food, and can cause anemia and other diseases. However, what happens before hemolysis and anemia caused by Pb poisoning is unclear. Here, we demonstrated Pb can cause procoagulant activity of erythroid cells leading to thrombosis before hemolysis. In freshly isolated human erythroid cells, we observed that Pb resulted in hemolysis in both concentration- and time-dependent manners, but that no lysis occurred in Pb-exposed erythroid cells (≤20 µM for 1 h). Pb treatment did not cause shape changes at up to 0.5 h incubation but at 1 h incubation echinocyte and echino-spherocyte shape changes were observed, indicating that Pb can exaggerate a concentration- and time-dependent trend of shape changes in erythroid cells. After Pb treatment, ROS-independent eryptosis was shown with no increase of reactive oxygen species (ROS), but with an increase of [Ca2+]i and caspase 3 activity. With a thrombosis mouse model, we observed increased thrombus by Pb treatment (0 or 25 mg/kg). In brief, prior to hemolysis, we demonstrated Pb can cause ROS-independent but [Ca2+]i-dependent eryptosis, which might provoke thrombosis.


Assuntos
Anemia , Eriptose , Trombose , Animais , Cálcio , Eritrócitos , Hemólise , Chumbo/toxicidade , Camundongos , Fosfatidilserinas , Espécies Reativas de Oxigênio , Trombose/etiologia
17.
Redox Biol ; 54: 102389, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35792437

RESUMO

The KEAP1-NRF2-ARE signaling pathway plays a central role in mediating the adaptive cellular stress response to oxidative and electrophilic chemicals. This canonical pathway has been extensively studied and reviewed in the past two decades, but rarely was it looked at from a quantitative signaling perspective. Signal amplification, i.e., ultrasensitivity, is crucially important for robust induction of antioxidant genes to appropriate levels that can adequately counteract the stresses. In this review article, we examined a number of well-known molecular events in the KEAP1-NRF2-ARE pathway from a quantitative perspective with a focus on how signal amplification can be achieved. We illustrated, by using a series of mathematical models, that redox-regulated protein sequestration, stabilization, translation, nuclear trafficking, DNA promoter binding, and transcriptional induction - which are embedded in the molecular network comprising KEAP1, NRF2, sMaf, p62, and BACH1 - may generate highly ultrasensitive NRF2 activation and antioxidant gene induction. The emergence and degree of ultrasensitivity depend on the strengths of protein-protein and protein-DNA interaction and protein abundances. A unique, quantitative understanding of signal amplification in the KEAP1-NRF2-ARE pathway will help to identify sensitive targets for the prevention and therapeutics of oxidative stress-related diseases and develop quantitative adverse outcome pathway models to facilitate the health risk assessment of oxidative chemicals.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais
18.
Toxicol Appl Pharmacol ; 450: 116174, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35878798

RESUMO

Arsenic is a notorious environmental pollutant. Of note, developmental arsenic exposure has been found to increase the risk of developing a variety of ailments later in life, but the underlying mechanism is not well understood. Many elements of host health have been connected to the gut microbiota. It is still unclear whether and how developmental arsenic exposure affects the gut microbiota. In the present study, we found that developmental arsenic exposure changed intestinal morphology and increased intestinal permeability and inflammation in mouse pups at weaning. These alterations were accompanied by a significant change in gut microbiota, as evidenced by considerably reduced gut microbial richness and diversity. In developmentally arsenic-exposed pups, the relative abundance of Muribaculaceae was significantly decreased, while the relative abundance of Akkermansia and Bacteroides was significantly enhanced at the genus level. Metabolome and pathway enrichment analyses indicated that amino acid and purine metabolism was promoted, while glycerophospholipid metabolism was inhibited. Interestingly, the relative abundance of Muribaculaceae and Akkermansia showed a strong correlation with most plasma metabolites significantly altered by developmental arsenic exposure. These data indicate that gut microbiota dysbiosis may be a critical link between developmental arsenic exposure and metabolic disorders and shed light on the mechanisms underlying increased susceptibility to diseases due to developmental arsenic exposure.


Assuntos
Arsênio , Microbioma Gastrointestinal , Animais , Arsênio/toxicidade , Disbiose/induzido quimicamente , Metabolismo dos Lipídeos , Metaboloma , Camundongos
20.
Sci Total Environ ; 837: 155685, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523338

RESUMO

Developmental arsenic exposure increases cancer risk in later life with the mechanism elusive. Oxidative stress is a dominant determinant in arsenic toxicity. However, the role of Nrf2, a key regulator in antioxidative response, in tumor-augmenting effects by developmental arsenic exposure is unclear. In the present study, wild-type C57BL/6J and Nrf2-konckout (Nrf2-KO) were developmentally exposed to inorganic arsenic via drinking water. For hepatic tumorigenesis analysis, mice were intraperitoneally injected with diethylnitrosamine (DEN) at two weeks of age. Developmental arsenic exposure aggravated tumor multiplicity and burden, and expression of PCNA and AFP in hepatic tumors induced by DEN. Nrf2 activation as indicated by over-expression of Nrf2 and its downstream genes, including Gss, Gsr, p62, Gclc and Gclm, was found in liver tumors, as well as in the livers in developmentally arsenic-exposed pups at weaning. Notably, Nrf2 deficiency attenuated tumor-augmenting effects and over-expression of Nrf2 downstream genes due to developmental arsenic exposure. Furthermore, the levels of urinary DEN metabolite (acetaldehyde) and hepatic DNA damage markers (O6-ethyl-2-deoxyguanosine adducts and γ-histone H2AX) after DEN treatment were elevated by Nrf2 agonist, 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide. Collectively, our data suggest that augmentation of DEN-induced hepatic tumorigenesis by developmental arsenic exposure is dependent on Nrf2 activation, which may be related to the role of Nrf2 in DEN metabolic activation. Our findings reveal, at least in part, the mechanism underlying increased susceptibility to developing cancer due to developmental arsenic exposure.


Assuntos
Arsênio , Neoplasias Hepáticas Experimentais , Fator 2 Relacionado a NF-E2 , Animais , Arsênio/toxicidade , Carcinogênese/induzido quimicamente , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...