Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 159: 106847, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068316

RESUMO

BACKGROUND: Convolutional Neural Networks (CNNs) and the hybrid models of CNNs and Vision Transformers (VITs) are the recent mainstream methods for COVID-19 medical image diagnosis. However, pure CNNs lack global modeling ability, and the hybrid models of CNNs and VITs have problems such as large parameters and computational complexity. These models are difficult to be used effectively for medical diagnosis in just-in-time applications. METHODS: Therefore, a lightweight medical diagnosis network CTMLP based on convolutions and multi-layer perceptrons (MLPs) is proposed for the diagnosis of COVID-19. The previous self-supervised algorithms are based on CNNs and VITs, and the effectiveness of such algorithms for MLPs is not yet known. At the same time, due to the lack of ImageNet-scale datasets in the medical image domain for model pre-training. So, a pre-training scheme TL-DeCo based on transfer learning and self-supervised learning was constructed. In addition, TL-DeCo is too tedious and resource-consuming to build a new model each time. Therefore, a guided self-supervised pre-training scheme was constructed for the new lightweight model pre-training. RESULTS: The proposed CTMLP achieves an accuracy of 97.51%, an f1-score of 97.43%, and a recall of 98.91% without pre-training, even with only 48% of the number of ResNet50 parameters. Furthermore, the proposed guided self-supervised learning scheme can improve the baseline of simple self-supervised learning by 1%-1.27%. CONCLUSION: The final results show that the proposed CTMLP can replace CNNs or Transformers for a more efficient diagnosis of COVID-19. In addition, the additional pre-training framework was developed to make it more promising in clinical practice.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Redes Neurais de Computação , Algoritmos , Endoscopia
2.
Comput Biol Med ; 146: 105531, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35489140

RESUMO

BACKGROUND: As of Feb 27, 2022, coronavirus (COVID-19) has caused 434,888,591 infections and 5,958,849 deaths worldwide, dealing a severe blow to the economies and cultures of most countries around the world. As the virus has mutated, its infectious capacity has further increased. Effective diagnosis of suspected cases is an important tool to stop the spread of the pandemic. Therefore, we intended to develop a computer-aided diagnosis system for the diagnosis of suspected cases. METHODS: To address the shortcomings of commonly used pre-training methods and exploit the information in unlabeled images, we proposed a new pre-training method based on transfer learning with self-supervised learning (TS). After that, a new convolutional neural network based on attention mechanism and deep residual network (RANet) was proposed to extract features. Based on this, a hybrid ensemble model (TSRNet) was proposed for classifying lung CT images of suspected patients as COVID-19 and normal. RESULTS: Compared with the existing five models in terms of accuracy (DarkCOVIDNet: 98.08%; Deep-COVID: 97.58%; NAGNN: 97.86%; COVID-ResNet: 97.78%; Patch-based CNN: 88.90%), TSRNet has the highest accuracy of 99.80%. In addition, the recall, f1-score, and AUC of the model reached 99.59%, 99.78%, and 1, respectively. CONCLUSION: TSRNet can effectively diagnose suspected COVID-19 cases with the help of the information in unlabeled and labeled images, thus helping physicians to adopt early treatment plans for confirmed cases.


Assuntos
COVID-19 , Aprendizado Profundo , COVID-19/diagnóstico , Humanos , Redes Neurais de Computação , Pandemias , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA