Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 95, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566259

RESUMO

BACKGROUND: Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS: haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS: The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION: haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Humanos , Ratos , Animais , Cromatografia Líquida , Proteômica , Lipopolissacarídeos/farmacologia , Espectrometria de Massas em Tandem , Lesão Pulmonar Aguda/terapia , Síndrome do Desconforto Respiratório/terapia , Obesidade , Controle de Qualidade , Vesículas Extracelulares/fisiologia , Células-Tronco Mesenquimais/fisiologia
2.
Sci Rep ; 13(1): 17877, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857639

RESUMO

Studies considering the relationship between non-obesity-related body composition and lung function are few; therefore, this study aimed to explore these correlations and effects. This cross-sectional study conducted in rural Qingtongxia City and Pingluo County, Ningxia, China, included 776 participants aged 30-75 years. Body composition and lung function were measured using direct segmental multifrequency bioelectrical impedance analysis and a digital spirometer, respectively. Their correlation was assessed using partial correlation analysis, controlling for age and smoking status, and the body composition effect on lung function was analyzed using binomial logistic regression analysis. The body components total body water content, protein content, mineral content, muscle mass, fat-free mass (FFM), skeletal muscle mass, basal metabolic volume, and chest circumference (CC) positively correlated with pulmonary function (forced vital capacity and forced expiratory volume in one second) in both sexes. Neck circumference and hip circumference positively correlated with pulmonary function in women. Additionally, lung function declines more slowly in women (odds ratio [OR] = 0.66, 95% confidence interval [CI] = 0.44-0.98, p = 0.04); CC (OR = 0.92, 95% CI = 0.86-0.98, p = 0.01) increased as a protective factor for decreased lung function. Increased waist circumference (OR = 1.04, 95% CI = 1.00-1.09, p = 0.04) was a risk factor for reduced lung function. FFM contains body composition indicators positively correlating with lung function, excluding fat-related body composition. Abdominal obesity increases the risk of decreased lung function.


Assuntos
Composição Corporal , Pulmão , Masculino , Humanos , Feminino , Estudos Transversais , Índice de Massa Corporal , Composição Corporal/fisiologia , Obesidade/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...