Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2244, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474070

RESUMO

Living systems have evolved to efficiently consume available energy sources using an elaborate circuitry of chemical reactions which, puzzlingly, bear a strict restriction to asymmetric chiral configurations. While autocatalysis is known to promote such chiral symmetry breaking, whether a similar phenomenon may also be induced in a more general class of configurable chemical systems-via energy exploitation-is a sensible yet underappreciated possibility. This work examines this question within a model of randomly generated complex chemical networks. We show that chiral symmetry breaking may occur spontaneously and generically by harnessing energy sources from external environmental drives. Key to this transition are intrinsic fluctuations of achiral-to-chiral reactions and tight matching of system configurations to the environmental drives, which together amplify and sustain diverged enantiomer distributions. These asymmetric states emerge through steep energetic transitions from the corresponding symmetric states and sharply cluster as highly-dissipating states. The results thus demonstrate a generic mechanism in which energetic drives may give rise to homochirality in an otherwise totally symmetrical environment, and from an early-life perspective, might emerge as a competitive, energy-harvesting advantage.

2.
Phys Rev E ; 103(2-1): 022101, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735990

RESUMO

The design of small scale nonequilibrium steady states (NESS) is a challenging, open ended question. While similar equilibrium problems are tractable using standard thermodynamics, a generalized description for nonequilibrium systems is lacking, making the design problem particularly difficult. Here we show we can exploit the large-deviation behavior of a Brownian particle and design a variety of geometrically complex steady-state density distributions and flux field flows. We achieve this design target from direct knowledge of the joint large-deviation functional for the empirical density and flow, and a "relaxation" algorithm on the desired target states via adjustable force field parameters. We validate the method by replicating analytical results, and demonstrate its capacity to yield complex prescribed targets, such as rose-curve or polygonal shapes on the plane. We consider this dynamical fluctuation approach a first step towards the design of more complex NESS where general frameworks are otherwise still lacking.

3.
Phys Rev E ; 101(2-1): 022415, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32168722

RESUMO

To mitigate errors induced by the cell's heterogeneous noisy environment, its main information channels and production networks utilize the kinetic proofreading (KPR) mechanism. Here, we examine two extensively studied KPR circuits, DNA replication by the T7 DNA polymerase and translation by the E. coli ribosome. Using experimental data, we analyze the performance of these two vital systems in light of the fundamental bounds set by the recently discovered thermodynamic uncertainty relation (TUR), which places an inherent trade-off between the precision of a desirable output and the amount of energy dissipation required. We show that the DNA polymerase operates close to the TUR lower bound, while the ribosome operates ∼5 times farther from this bound. This difference originates from the enhanced binding discrimination of the polymerase which allows it to operate effectively as a reduced reaction cycle prioritizing correct product formation. We show that approaching this limit also decouples the thermodynamic uncertainty factor from speed and error, thereby relaxing the accuracy-speed trade-off of the system. Altogether, our results show that operating near this reduced cycle limit not only minimizes thermodynamic uncertainty, but also results in global performance enhancement of KPR circuits.


Assuntos
Modelos Biológicos , Incerteza , Bacteriófago T7/enzimologia , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/citologia , Cinética , Ribossomos/metabolismo , Termodinâmica
4.
J Chem Phys ; 148(10): 104509, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29544270

RESUMO

Inverse design can be a useful strategy for discovering interactions that drive particles to spontaneously self-assemble into a desired structure. Here, we extend an inverse design methodology-relative entropy optimization-to determine isotropic interactions that promote assembly of targeted multicomponent phases, and we apply this extension to design interactions for a variety of binary crystals ranging from compact triangular and square architectures to highly open structures with dodecagonal and octadecagonal motifs. We compare the resulting optimized (self- and cross) interactions for the binary assemblies to those obtained from optimization of analogous single-component systems. This comparison reveals that self-interactions act as a "primer" to position particles at approximately correct coordination shell distances, while cross interactions act as the "binder" that refines and locks the system into the desired configuration. For simpler binary targets, it is possible to successfully design self-assembling systems while restricting one of these interaction types to be a hard-core-like potential. However, optimization of both self- and cross interaction types appears necessary to design for assembly of more complex or open structures.

5.
J Phys Chem B ; 122(21): 5547-5556, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29486558

RESUMO

We discuss how a machine learning approach based on relative entropy optimization can be used as an inverse design strategy to discover isotropic pair interactions that self-assemble single- or multicomponent particle systems into Frank-Kasper phases. In doing so, we also gain insights into the self-assembly of quasicrystals.

6.
J Chem Phys ; 146(14): 144501, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28411598

RESUMO

Using a recently introduced formulation of the ground-state inverse design problem for a targeted lattice [W. Piñeros et al., J. Chem. Phys. 144, 084502 (2016)], we discover purely repulsive and isotropic pair interactions that stabilize low-density truncated square and truncated hexagonal crystals, as well as promote their assembly in Monte Carlo simulations upon isochoric cooling from a high-temperature fluid phase. The results illustrate that the primary challenge to stabilizing very open two-dimensional lattices is to design interactions that can favor the target structure over competing stripe microphases.

7.
J Chem Phys ; 145(5): 054901, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27497576

RESUMO

Building on a recently introduced inverse strategy, isotropic and convex repulsive pair potentials were designed that favor assembly of particles into kagome and equilateral snub square lattices. The former interactions were obtained by a numerical solution of a variational problem that maximizes the range of density for which the ground state of the potential is the kagome lattice. Similar optimizations targeting the snub square lattice were also carried out, employing a constraint that required a minimum chemical potential advantage of the target over select competing structures. This constraint helped to discover isotropic interactions that meaningfully favored the snub square lattice as the ground state structure despite the asymmetric spatial distribution of particles in its coordination shells and the presence of tightly competing structures. Consistent with earlier published results [W. Piñeros et al., J. Chem. Phys. 144, 084502 (2016)], enforcement of greater chemical potential advantages for the target lattice in the interaction optimization led to assemblies with enhanced thermal stability.

8.
J Chem Phys ; 144(8): 084502, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931707

RESUMO

We use inverse methods of statistical mechanics to explore trade-offs associated with designing interactions to stabilize self-assembled structures against changes in density or temperature. Specifically, we find isotropic, convex-repulsive pair potentials that maximize the density range for which a two-dimensional square lattice is the stable ground state subject to a constraint on the chemical potential advantage it exhibits over competing structures (i.e., "depth" of the associated minimum on the chemical potential hypersurface). We formulate the design problem as a nonlinear program, which we solve numerically. This allows us to efficiently find optimized interactions for a wide range of possible chemical potential constraints. We find that assemblies designed to exhibit a large chemical potential advantage at a specified density have a smaller overall range of densities for which they are stable. This trend can be understood by considering the separation-dependent features of the pair potential and its gradient required to enhance the stability of the target structure relative to competitors. Using molecular dynamics simulations, we further show that potentials designed with larger chemical potential advantages exhibit higher melting temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...