Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Eur J Neurosci ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039939

RESUMO

Language control in bilingual speakers is thought to be implicated in effectively switching between languages, inhibiting the non-intended language, and continuously monitoring what to say and what has been said. It has been a matter of controversy concerning whether language control operates in a comparable manner to cognitive control processes in non-linguistic domains (domain-general) or if it is exclusive to language processing (domain-specific). As midfrontal theta oscillations have been considered as an index of cognitive control, examining whether a midfrontal theta effect is evident in tasks requiring bilingual control could bring new insights to the ongoing debate. To this end, we reanalysed the EEG data from two previous bilingual production studies where Dutch-English bilinguals named pictures based on colour cues. Specifically, we focused on three fundamental control processes in bilingual production: switching between languages, inhibition of the nontarget language, and monitoring of speech errors. Theta power increase was observed in switch trials compared to repeat trials, with a midfrontal scalp distribution. However, no theta power difference was observed in switch trials following a shorter sequence of same-language trials compared to a longer sequence, suggesting a missing modulation of inhibitory control. Similarly, increased midfrontal theta power was observed when participants failed to switch to the intended language compared to correct responses. Altogether, these findings tentatively support the involvement of domain-general cognitive control mechanisms in bilingual switching.

2.
Psychophysiology ; : e14624, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38873838

RESUMO

Previous studies have found electroencephalogram (EEG) amplitude and scalp topography differences between neurotypical and neurological/neurosurgical groups, being interpreted at the cognitive level. However, these comparisons are invariably accompanied by anatomical changes. Critical to EEG are the so-called volume currents, which are affected by the spatial distribution of the different tissues in the head. We investigated the effect of cerebrospinal fluid (CSF)-filled cavities on simulated EEG scalp data. We simulated EEG scalp potentials for known sources using different volume conduction models: a reference model (i.e., unlesioned brain) and models with realistic CSF-filled cavities gradually increasing in size. We used this approach for a single source close or far from the CSF-lesion cavity, and for a scenario with a distributed configuration of sources (i.e., a "cognitive event-related potential effect"). The magnitude and topography errors between the reference and lesion models were quantified. For the single-source simulation close to the lesion, the CSF-filled lesion modulated signal amplitude with more than 17% magnitude error and topography with more than 9% topographical error. Negligible modulation was found for the single source far from the lesion. For the multisource simulations of the cognitive effect, the CSF-filled lesion modulated signal amplitude with more than 6% magnitude error and topography with more than 16% topography error in a nonmonotonic fashion. In conclusion, the impact of a CSF-filled cavity cannot be neglected for scalp-level EEG data. Especially when group-level comparisons are made, any scalp-level attenuated, aberrant, or absent effects are difficult to interpret without considering the confounding effect of CSF.

3.
Brain Struct Funct ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748232

RESUMO

Studies investigating language commonly isolate one modality or process, focusing on comprehension or production. Here, we present a framework for a paradigm that combines both: the Concise Language Paradigm (CLaP), tapping into comprehension and production within one trial. The trial structure is identical across conditions, presenting a sentence followed by a picture to be named. We tested 21 healthy speakers with EEG to examine three time periods during a trial (sentence, pre-picture interval, picture onset), yielding contrasts of sentence comprehension, contextually and visually guided word retrieval, object recognition, and naming. In the CLaP, sentences are presented auditorily (constrained, unconstrained, reversed), and pictures appear as normal (constrained, unconstrained, bare) or scrambled objects. Imaging results revealed different evoked responses after sentence onset for normal and time-reversed speech. Further, we replicated the context effect of alpha-beta power decreases before picture onset for constrained relative to unconstrained sentences, and could clarify that this effect arises from power decreases following constrained sentences. Brain responses locked to picture-onset differed as a function of sentence context and picture type (normal vs. scrambled), and naming times were fastest for pictures in constrained sentences, followed by scrambled picture naming, and equally fast for bare and unconstrained picture naming. Finally, we also discuss the potential of the CLaP to be adapted to different focuses, using different versions of the linguistic content and tasks, in combination with electrophysiology or other imaging methods. These first results of the CLaP indicate that this paradigm offers a promising framework to investigate the language system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA