Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122478, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801735

RESUMO

The objective of our research was to determine the brain changes at the molecular and elemental levels typical of early-stage obesity. Therefore a combined approach using Fourier transform infrared micro-spectroscopy (FTIR-MS) and synchrotron radiation induced X-ray fluorescence (SRXRF) was introduced to evaluate some brain macromolecular and elemental parameters in high-calorie diet (HCD)- induced obese rats (OB, n = 6) and in their lean counterparts (L, n = 6). A HCD was found to alter the lipid- and protein- related structure and elemental composition of the certain brain areas important for energy homeostasis. The increased lipid unsaturation in the frontal cortex and ventral tegmental area, the increased fatty acyl chain length in the lateral hypothalamus and substantia nigra as well as the decreased both protein α helix to protein ß- sheet ratio and the percentage fraction of ß-turns and ß-sheets in the nucleus accumbens were revealed in the OB group reflecting obesity-related brain biomolecular aberrations. In addition, the certain brain elements including P, K and Ca were found to differentiate the lean and obese groups at the best extent. We can conclude that HCD-induced obesity triggers lipid- and protein- related structural changes as well as elemental redistribution within various brain structures important for energy homeostasis. In addition, an approach applying combined X-ray and infrared spectroscopy was shown to be a reliable tool for identifying elemental-biomolecular rat brain changes for better understanding the interplay between the chemical and structural processes involved in appetite control.


Assuntos
Encéfalo , Proteínas , Ratos , Animais , Raios X , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipídeos , Síncrotrons
2.
Biochim Biophys Acta Gen Subj ; 1867(2): 130279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36384192

RESUMO

BACKGROUND: Early-stage detection of subclinical obesity-driven systemic changes is a challenging area of medical diagnostics, where the most popular existing measures - such as body mass index - BMI - often fall short of providing a realistic estimate of adiposity and, therefore, of ongoing pathologies at the systemic, tissue and cellular level. In the quest for identifying new more robust diagnostic markers, whole-organ analysis of chemical elements is a promising approach for identifying candidate proxies of obesity status in the system. METHODS: Total Reflection X-ray fluorescence (TXRF) coupled with biochemical assays, chemometrics and statistical validation was used as a new integrated pipeline for marker identification in external ear samples of obese animals. The specimens were taken from obese animals fed a high calorie diet as well as from lean intact animals fed a standard diet. RESULTS: The most significant differences in the content of K, Fe, Br, and Rb between the studied groups of the animals were identified. However, with the methodology applied Rb was found the most robust biochemical discriminator of early-stage obesity effects, as validated by the logistic regression model. We observed no relationship between the levels of the elements consumed by the animals and their apparent content in the earlobe tissue samples. CONCLUSIONS: Our preliminary study confirms that obesity alters tissue trace metal metabolism and shows the proposed new approach as an accurate and reliable methodology for detecting tissue elemental obesity-related alterations. GENERAL SIGNIFICANCE: This result can be of practical significance for designing new point-of-care systems for obesity screening tests, taking advantage of direct/indirect Rb measurements.


Assuntos
Quimiometria , Oligoelementos , Animais , Obesidade/prevenção & controle , Análise Espectral , Biomarcadores
3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362225

RESUMO

The objective of our study was to identify new markers related to excessive body adiposity and its early consequences. For this purpose we determined serum FGF-19 and FGF-21 concentrations in obese rats, whose role in the pathogenesis of obesity is not yet established. In addition, a total reflection X-ray fluorescence technique was applied to determine the elemental chemistry of certain tissues affected by obesity. Next, the new biochemical and molecular parameters were correlated with well-known obesity-related markers of metabolic abnormalities. Our obese rats were characterized by increased calorie consumption and body adiposity, hypercholesterolemia, elevated levels of liver enzymes and FGF-21, while the level of FGF-19 was reduced. Strong relationships between new hormones and established metabolic parameters were observed. Furthermore, we demonstrated that obesity had the greatest effect on elemental composition in the adipose tissue and liver and that rubidium (Rb) had the highest importance in distinguishing the studied groups of animals. Tissue Rb strongly correlated with both well-known and new markers of obesity. In conclusion, we confirmed serum FGF-19 and FGF-21 as useful new markers of obesity-related metabolic alternations and we robustly propose Rb as a novel indicator of excessive body adiposity and its early consequences. However, further investigations are encouraged to address this clinical issue.


Assuntos
Fatores de Crescimento de Fibroblastos , Obesidade , Ratos , Animais , Obesidade/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Adiposidade , Ingestão de Energia , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...