Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(20): 203001, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039460

RESUMO

The presence of doubly excited states (DESs) above the core-hole ionization threshold nontrivially modulates the x-ray absorption because the participator Auger decay couples DESs to the underlying low-energy core-hole continuum. We show that coupling also affects the high-energy continuum populated by the spectator Auger decay of DESs. For the K-L_{23}^{2} Auger decay of the 1s^{-1}3p^{-1}4s^{2}^{1}P state in argon, the competing nonresonant path is assigned to the recapture of the 1s photoelectron caused by emission of the fast electron from the shake-up K-L_{23}^{2} decay of the 1s^{-1} ion.

2.
Struct Dyn ; 10(5): 054302, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37799711

RESUMO

Dynamical response of water exposed to x-rays is of utmost importance in a wealth of science areas. We exposed isolated water isotopologues to short x-ray pulses from a free-electron laser and detected momenta of all produced ions in coincidence. By combining experimental results and theoretical modeling, we identify significant structural dynamics with characteristic isotope effects in H2O2+, D2O2+, and HDO2+, such as asymmetric bond elongation and bond-angle opening, leading to two-body or three-body fragmentation on a timescale of a few femtoseconds. A method to disentangle the sequences of events taking place upon the consecutive absorption of two x-ray photons is described. The obtained deep look into structural properties and dynamics of dissociating water isotopologues provides essential insights into the underlying mechanisms.

3.
Phys Chem Chem Phys ; 25(19): 13784-13791, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159272

RESUMO

We present a study on molecular-frame photoelectron angular distributions (MFPADs) of small molecules using circularly polarized synchrotron light. We find that the main forward-scattering peaks of the MFPADs are slightly tilted with respect to the molecular axis. This tilt angle is directly connected to the molecular bond length by a simple, universal formula. We apply the derived formula to several examples of MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in the case of homo-nuclear diatomic molecules such as N2.

4.
Phys Chem Chem Phys ; 25(1): 183-191, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484232

RESUMO

Momentum vector correlation is a powerful tool to study molecular dissociation. We have studied the three-body fragmentation of carbon disulfide after sulfur 1s photoionization by means of momentum imaging techniques. Concerted and sequential pathways are disentangled in three-body fragmentation using adapted analysis strategies. In particular, we introduce various data visualization schemes that are proved to be particularly efficient to determine dissociation dynamics.


Assuntos
Dissulfeto de Carbono , Enxofre
5.
Phys Chem Chem Phys ; 24(11): 6590-6604, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234229

RESUMO

Auger decay after photoexcitation or photoemission of an electron from a deep inner shell in the hard X-ray regime can be rather complex, implying a multitude of phenomena such as multiple-step cascades, post-collision interaction (PCI), and electronic state-lifetime interference. Furthermore, in a molecule nuclear motion can also be triggered. Here we discuss a comprehensive theoretical method which allows us to analyze in great detail Auger spectra measured around an inner-shell ionization threshold. HCl photoexcited or photoionized around the deep Cl 1s threshold is chosen as a showcase. Our method allows calculating Auger cross sections considering the nature of the ground, intermediate and final states (bound or dissociative), and the evolution of the relaxation process, including both electron and nuclear dynamics. In particular, we show that we can understand and reproduce a so-called experimental 2D-map, consisting of a series of resonant Auger spectra measured at different photon energies, therefore obtaining a detailed picture of all above-mentioned dynamical phenomena at once.

6.
Phys Chem Chem Phys ; 23(18): 10780-10790, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33908498

RESUMO

Using synchrotron radiation in the tender X-ray regime, a photoelectron spectrum showing the formation of single site double-core-hole pre-edge states, involving the K shell of the O atom in CO, has been recorded by means of high-resolution electron spectroscopy. The experimentally observed structures have been simulated, interpreted and assigned, employing state-of-the-art ab initio quantum chemical calculations, on the basis of a theoretical model, accounting for their so-called direct or conjugate character. Features appearing above the double ionization threshold have been reproduced by taking into account the strong mixing between multi-excited and continuum states. The shift of the σ* resonance below the double ionization threshold, in combination with the non-negligible contributions of multi-excited configurations in the final states reached, gives rise to a series of avoided crossings between the different potential energy curves.

7.
Phys Rev Lett ; 124(18): 183001, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32441980

RESUMO

Differences in postcollision interaction (PCI) effects on Kr L_{3}M_{4,5}M_{4,5} Auger electron spectra were observed, depending on whether the initial photoionization occurred slightly above the K threshold or slightly above the L_{3} threshold. For the former, KL fluorescence emission most likely happens and then Auger processes due to the L_{3} hole follow. The time delay due to fluorescence causes a reduced shift of the Auger peak and tailing toward lower energy, since the Auger overtaking of the photoelectron happens later in time and at a location farther away from the ionic core, compared to the case for the simple one-step L_{3}M_{4,5}M_{4,5} Auger decay after L-shell photoionization. Time-dependent theory for PCI in multistep processes agrees well with experiment, illustrating the effect as an internal clock for the time-sequence of the dynamical process.

8.
Sci Rep ; 10(1): 1246, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988321

RESUMO

L-shell ionisation and subsequent Coulomb explosion of fully deuterated methyl iodide, CD3I, irradiated with hard X-rays has been examined by a time-of-flight multi-ion coincidence technique. The core vacancies relax efficiently by Auger cascades, leading to charge states up to 16+. The dynamics of the Coulomb explosion process are investigated by calculating the ions' flight times numerically based on a geometric model of the experimental apparatus, for comparison with the experimental data. A parametric model of the explosion, previously introduced for multi-photon induced Coulomb explosion, is applied in numerical simulations, giving good agreement with the experimental results for medium charge states. Deviations for higher charges suggest the need to include nuclear motion in a putatively more complete model. Detection efficiency corrections from the simulations are used to determine the true distributions of molecular charge states produced by initial L1, L2 and L3 ionisation.

9.
Rep Prog Phys ; 83(1): 016401, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31694003

RESUMO

We present here a review of the most significant recent achievements in the field of HAXPES (hard x-ray photoelectron spectroscopy) on isolated atoms and molecules, and related spectroscopies. The possibility of conducting hard x-ray photoexcitation and photoionization experiments under state-of-the art conditions in terms of photon and electron kinetic energy resolution has become available only in the last few years. HAXPES has then produced structural and dynamical information at the level of detail already reached in the VUV and soft-x-ray ranges. The much improved experimental conditions have allowed extending to the hard x-ray range some methods well established in soft x-ray spectroscopies. Investigations of electron and nuclear dynamics in the femtosecond (fs, 10-15 s) and even attosecond (as, 10-18 s) regime have become feasible. Complex relaxation phenomena following deep-core ionization can now be enlightened in great detail. Other phenomena like e.g. recoil-induced effects are much more important in fast photoelectron emission, which can be induced by hard x-rays. Furthermore, a new kind of ionic states with double core holes can be observed by x-ray single-photon absorption. Future perspectives are also discussed.

10.
J Chem Phys ; 149(13): 134313, 2018 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-30292205

RESUMO

Spectra reflecting the formation of single-site double-core-hole pre-edge states involving the N 1s and C 1s core levels of acetonitrile have been recorded by means of high-resolution single-channel photoelectron spectroscopy using hard X-ray excitation. The data are interpreted with the aid of ab initio quantum chemical calculations, which take into account the direct or conjugate nature of this type of electronic states. Furthermore, the photoelectron spectra of N 1s and C 1s singly core-ionized states have been measured. From these spectra, the chemical shift between the two C 1s-1 states is estimated. Finally, by utilizing C 1s single and double core-ionization potentials, initial and final state effects for the two inequivalent carbon atoms have been investigated.

11.
Phys Rev Lett ; 121(7): 073002, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169107

RESUMO

A mixture of CF_{4} and CO gases is used to study photoelectron recoil effects extending into the tender x-ray region. In CF_{4}, the vibrational envelope of the C 1s photoelectron spectrum becomes fully dominated by the recoil-induced excitations, revealing vibrational modes hidden from Franck-Condon excitations. In CO, using CF_{4} as an accurate energy calibrant, we determine the partitioning of the recoil-induced internal excitation energy between rotational and vibrational excitation. The observed rotational recoil energy is 2.88(28) times larger than the observed vibrational recoil energy, well in excess of the ratio of 2 predicted by the basic recoil model. The experiment is, however, in good agreement with the value of 2.68 if energy transfer via Coriolis coupling is included.

12.
Rev Sci Instrum ; 89(6): 063107, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29960531

RESUMO

A new setup has been designed and built to study organometallic complexes in gas phase at the third-generation Synchrotron radiation sources. This setup consists of a new homemade computer-controlled gas cell that allows us to sublimate solid samples by accurately controlling the temperature. This cell has been developed to be a part of the high-resolution X-ray emission spectrometer permanently installed at the GALAXIES beamline of the French National Synchrotron Facility SOLEIL. To illustrate the capabilities of the setup, the cell has been successfully used to record high-resolution Kα emission spectra of gas-phase ferrocene Fe(C5H5)2 and to characterize their dependence with the excitation energy. This will allow to extend resonant X-ray emission to different organometallic molecules.

13.
Phys Chem Chem Phys ; 20(4): 2724-2730, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29322146

RESUMO

The formation of double core hole pre-edge states of the form 1s-12p-1(1,3P)σ*,nl for HCl, located on the binding energy scale as deep as 3 keV, has been investigated by means of a high resolution single channel electron spectroscopy technique recently developed for the hard X-ray region. A detailed spectroscopic assignment is performed based on ab initio quantum chemical calculations and by using a sophisticated fit model comprising regular Rydberg series. Quantum defects for the different Rydberg series are extracted and the energies for the associated double core hole ionization continua are extrapolated. Dynamical information such as the lifetime width of these double-core-hole pre-edge states and the slope of the related dissociative potential energy curves are also obtained. In addition, 1s-12p-1V-1nlλn'l'λ' double shake-up transitions and double core hole states of the form 1s-12s-1(1,3S)σ*,4s are observed.

14.
Nat Commun ; 9(1): 63, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302026

RESUMO

The first steps in photochemical processes, such as photosynthesis or animal vision, involve changes in electronic and geometric structure on extremely short time scales. Time-resolved photoelectron spectroscopy is a natural way to measure such changes, but has been hindered hitherto by limitations of available pulsed light sources in the vacuum-ultraviolet and soft X-ray spectral region, which have insufficient resolution in time and energy simultaneously. The unique combination of intensity, energy resolution, and femtosecond pulse duration of the FERMI-seeded free-electron laser can now provide exceptionally detailed information on photoexcitation-deexcitation and fragmentation in pump-probe experiments on the 50-femtosecond time scale. For the prototypical system acetylacetone we report here electron spectra measured as a function of time delay with enough spectral and time resolution to follow several photoexcited species through well-characterized individual steps, interpreted using state-of-the-art static and dynamics calculations. These results open the way for investigations of photochemical processes in unprecedented detail.

15.
Phys Rev Lett ; 119(20): 203203, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219361

RESUMO

Fragmentation processes following C 1s→lowest unoccupied molecular orbital core excitations in CF_{4} have been analyzed on the ground of the angular distribution of the CF_{3}^{+} emitted fragments by means of Auger electron-photoion coincidences. Different time scales have been enlightened, which correspond to either ultrafast fragmentation, on the few-femtosecond scale, where the molecule has no time to rotate and the fragments are emitted according to the maintained orientation of the core-excited species, or dissociation after resonant Auger decay, where the molecule still keeps some memory of the excitation process before reassuming random orientation. Potential energy surfaces of the ground, core-excited, and final states have been calculated at the ab initio level, which show the dissociative nature of the neutral excited state, leading to ultrafast dissociation, as well as the also dissociative nature of some of the final ionic states reached after resonant Auger decay, yielding the same fragments on a much longer time scale.

16.
Sci Rep ; 7(1): 13317, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042664

RESUMO

Recent advances in X-ray instrumentation have made it possible to measure the spectra of an essentially unexplored class of electronic states associated with double inner-shell vacancies. Using the technique of single electron spectroscopy, spectra of states in CS2 and SF6 with a double hole in the K-shell and one electron exited to a normally unoccupied orbital have been obtained. The spectra are interpreted with the aid of a high-level theoretical model giving excellent agreement with the experiment. The results shed new light on the important distinction between direct and conjugate shake-up in a molecular context. In particular, systematic similarities and differences between pre-edge states near single core holes investigated in X-ray absorption spectra and the corresponding states near double core holes studied here are brought out.

17.
Phys Rev Lett ; 118(21): 213001, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28598654

RESUMO

Tuning hard x-ray excitation energy along Cl 1s→σ^{*} resonance in gaseous HCl allows manipulating molecular fragmentation in the course of the induced multistep ultrafast dissociation. The observations are supported by theoretical modeling, which shows a strong interplay between the topology of the potential energy curves, involved in the Auger cascades, and the so-called core-hole clock, which determines the time spent by the system in the very first step. The asymmetric profile of the fragmentation ratios reflects different dynamics of nuclear wave packets dependent on the photon energy.

18.
Phys Rev Lett ; 119(13): 133001, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341715

RESUMO

A combination of resonant inelastic x-ray scattering and resonant Auger spectroscopy provides complementary information on the dynamic response of resonantly excited molecules. This is exemplified for CH_{3}I, for which we reconstruct the potential energy surface of the dissociative I 3d^{-2} double-core-hole state and determine its lifetime. The proposed method holds a strong potential for monitoring the hard x-ray induced electron and nuclear dynamic response of core-excited molecules containing heavy elements, where ab initio calculations of potential energy surfaces and lifetimes remain challenging.

19.
Phys Rev Lett ; 117(13): 133001, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715102

RESUMO

Using synchrotron radiation and high-resolution electron spectroscopy, we have directly observed and identified specific photoelectrons from K^{-2}V states in neon corresponding to simultaneous 1s ionization and 1s→valence excitation. The natural lifetime broadening of the K^{-2}V states and the relative intensities of different types of shakeup channels have been determined experimentally and compared to ab initio calculations. Moreover, the high-energy Auger spectrum resulting from the decay of Ne^{2+}K^{-2} and Ne^{+}K^{-2}V states as well as from participator Auger decay from Ne^{+}K^{-1}L^{-1}V states, has been measured and assigned in detail utilizing the characteristic differences in lifetime broadenings of these core hole states. Furthermore, post collision interaction broadening of Auger peaks is clearly observed only in the hypersatellite spectrum from K^{-2} states, due to the energy sharing between the two 1s photoelectrons which favors the emission of one slow and one fast electron.

20.
Nat Commun ; 6: 6166, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25607354

RESUMO

Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...