Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanoscale ; 13(10): 5216-5223, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33661272

RESUMO

Recently, mixed honeycomb-kagome lattices featuring metal-organic networks have been theoretically proposed as topological insulator materials capable of hosting nontrivial edge states. This new family of so-called "organic topological insulators" are purely two-dimensional and combine polyaromatic-flat molecules with metal adatoms. However, their experimental validation is still pending given the generalized absence of edge states. Here, we generate one such proposed network on a Cu(111) substrate and study its morphology and electronic structure with the purpose of confirming its topological properties. The structural techniques reveal a practically flawless network that results in a kagome network multi-band observed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. However, at the network island borders we notice the absence of edge states. Bond-resolved imaging of the network exhibits an unexpected structural symmetry alteration that explains such disappearance. This collective lifting of the network symmetry could be more general than initially expected and provide a simple explanation for the recurrent experimental absence of edge states in predicted organic topological insulators.

3.
Angew Chem Int Ed Engl ; 59(51): 23220-23227, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32761699

RESUMO

On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures.

4.
Nat Commun ; 10(1): 2211, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101815

RESUMO

The interaction among magnetic moments screened by conduction electrons drives quantum phase transitions between magnetically ordered and heavy-fermion ground states. Here, starting from isolated magnetic impurities in the Kondo regime, we investigate the formation of the finite size analogue of a heavy Fermi liquid. We build regularly-spaced chains of Co adatoms on a metallic surface by atomic manipulation. Scanning tunneling spectroscopy is used to obtain maps of the Kondo resonance intensity with sub-atomic resolution. For sufficiently small interatomic separation, the spatial distribution of Kondo screening does not coincide with the position of the adatoms. It also develops enhancements at both edges of the chains. Since we can rule out any other interaction between Kondo impurities, this is explained in terms of the indirect hybridization of the Kondo orbitals mediated by a coherent electron gas, the mechanism that causes the emergence of heavy quasiparticles in the thermodynamic limit.

5.
Nat Nanotechnol ; 13(1): 19-23, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29062066

RESUMO

Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions 1-3 , although this effect can be circumvented by specially designed interfaces 4 . Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry 5-8 . Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

6.
J Am Chem Soc ; 131(35): 12729-35, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19722719

RESUMO

The ring-opening/closing reaction between spiropyran (SP) and merocyanine (MC) is a prototypical thermally and optically induced reversible reaction. However, MC molecules in solution are thermodynamically unstable at room temperature and thus return to the parent closed form on short time scales. Here we report contrary behavior of a submonolayer of these molecules adsorbed on a Au(111) surface. At 300 K, a thermally induced ring-opening reaction takes place on the gold surface, converting the initial highly ordered SP islands into MC dimer chains. We have found that the thermally induced ring-opening reaction has an activation barrier similar to that in solution. However, on the metal surface, the MC structures turn out to be the most stable phase. On the basis of the experimentally determined molecular structure of each molecular phase, we ascribe the suppression of the back reaction to a stabilization of the planar MC form on the metal surface as a consequence of its conjugated structure and large electric dipole moment. The metal surface thus plays a crucial role in the ring-opening reaction and can be used to alter the stability of the two isomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...