Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(10): e0040022, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069554

RESUMO

We present 49 metagenome assemblies of the microbiome associated with Sphagnum (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.

2.
Proc Biol Sci ; 288(1957): 20210609, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403639

RESUMO

Sphagnum peat mosses have an extraordinary impact on the global carbon cycle as they control long-term carbon sequestration in boreal peatland ecosystems. Sphagnum species engineer peatlands, which harbour roughly a quarter of all terrestrial carbon, through peat accumulation by constructing their own niche that allows them to outcompete other plants. Interspecific variation in peat production, largely resulting from differences in tissue decomposability, is hypothesized to drive niche differentiation along microhabitat gradients thereby alleviating competitive pressure. However, little empirical evidence exists for the role of selection in the creation and maintenance of such gradients. In order to document how niche construction and differentiation evolved in Sphagnum, we quantified decomposability for 54 species under natural conditions and used phylogenetic comparative methods to model the evolution of this carbon cycling trait. We show that decomposability tracks the phylogenetic diversification of peat mosses, that natural selection favours different levels of decomposability corresponding to optimum niche and that divergence in this trait occurred early in the evolution of the genus prior to the divergence of most extant species. Our results demonstrate the evolution of ecosystem engineering via natural selection on an extended phenotype, of a fundamental ecosystem process, and one of the Earth's largest soil carbon pools.


Assuntos
Sphagnopsida , Carbono , Sequestro de Carbono , Ecossistema , Fenótipo , Filogenia , Seleção Genética , Solo
3.
Mol Biol Evol ; 38(7): 2750-2766, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33681996

RESUMO

The relative importance of introgression for diversification has long been a highly disputed topic in speciation research and remains an open question despite the great attention it has received over the past decade. Gene flow leaves traces in the genome similar to those created by incomplete lineage sorting (ILS), and identification and quantification of gene flow in the presence of ILS is challenging and requires knowledge about the true phylogenetic relationship among the species. We use whole nuclear, plastid, and organellar genomes from 12 species in the rapidly radiated, ecologically diverse, actively hybridizing genus of peatmoss (Sphagnum) to reconstruct the species phylogeny and quantify introgression using a suite of phylogenomic methods. We found extensive phylogenetic discordance among nuclear and organellar phylogenies, as well as across the nuclear genome and the nodes in the species tree, best explained by extensive ILS following the rapid radiation of the genus rather than by postspeciation introgression. Our analyses support the idea of ancient introgression among the ancestral lineages followed by ILS, whereas recent gene flow among the species is highly restricted despite widespread interspecific hybridization known in the group. Our results contribute to phylogenomic understanding of how speciation proceeds in rapidly radiated, actively hybridizing species groups, and demonstrate that employing a combination of diverse phylogenomic methods can facilitate untangling complex phylogenetic patterns created by ILS and introgression.


Assuntos
Fluxo Gênico , Introgressão Genética , Especiação Genética , Filogenia , Sphagnopsida/genética , Genoma de Planta , Filogeografia
4.
Mol Phylogenet Evol ; 151: 106904, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32645485

RESUMO

The flavonoids, one of the largest classes of plant secondary metabolites, are found in lineages that span the land plant phylogeny and play important roles in stress responses and as pigments. Perhaps the most well-studied flavonoids are the anthocyanins that have human health benefits and help plants attract pollinators, regulate hormone production, and confer resistance to abiotic and biotic stresses. The canonical biochemical pathway responsible for the production of these pigments is well-characterized for flowering plants yet its conservation across deep divergences in land plants remains debated and poorly understood. Many early land plants such as mosses, liverworts, and ferns produce flavonoid pigments, but their biosynthetic origins and homologies to the anthocyanin pathway remain uncertain. We conducted phylogenetic analyses using full genome sequences representing nearly all major green plant lineages to reconstruct the evolutionary history of the anthocyanin biosynthetic pathway then test the hypothesis that genes in this pathway are present in early land plants. We found that the entire pathway was not intact until the most recent common ancestor of seed plants and that orthologs of many downstream enzymes are absent from seedless plants including mosses, liverworts, and ferns. Our results also highlight the utility of phylogenetic inference, as compared to pairwise sequence similarity, in orthology assessment within large gene families that have complex duplication-loss histories. We suggest that the production of red-violet flavonoid pigments widespread in seedless plants, including the 3-deoxyanthocyanins, requires the activity of novel, as-yet discovered enzymes, and represents convergent evolution of red-violet coloration across land plants.


Assuntos
Antocianinas/biossíntese , Vias Biossintéticas , Embriófitas/genética , Filogenia , Pigmentação/genética , Antocianinas/genética , Sequência de Bases , Vias Biossintéticas/genética , Flavonoides/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie
5.
New Phytol ; 223(2): 939-949, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30924950

RESUMO

Species in the genus Sphagnum create, maintain, and dominate boreal peatlands through 'extended phenotypes' that allow these organisms to engineer peatland ecosystems and thereby impact global biogeochemical cycles. One such phenotype is the production of peat, or incompletely decomposed biomass, that accumulates when rates of growth exceed decomposition. Interspecific variation in peat production is thought to be responsible for the establishment and maintenance of ecological gradients such as the microtopographic hummock-hollow gradient, along which sympatric species sort within communities. This study investigated the mode and tempo of functional trait evolution across 15 species of Sphagnum using data from the most extensive studies of Sphagnum functional traits to date and phylogenetic comparative methods. We found evidence for phylogenetic conservatism of the niche descriptor height-above-water-table and of traits related to growth, decay and litter quality. However, we failed to detect the influence of phylogeny on interspecific variation in other traits such as shoot density and suggest that environmental context can obscure phylogenetic signal. Trait correlations indicate possible adaptive syndromes that may relate to niche and its construction. This study is the first to formally test the extent to which functional trait variation among Sphagnum species is a result of shared evolutionary history.


Assuntos
Evolução Biológica , Ecossistema , Característica Quantitativa Herdável , Solo , Sphagnopsida/genética , Sequência de Bases , Modelos Lineares , Análise Multivariada , Filogenia
6.
New Phytol ; 217(1): 16-25, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29076547

RESUMO

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking. Here we introduce the Sphagnome Project, which incorporates genomics into a long-running history of Sphagnum research that has documented unparalleled contributions to peatland ecology, carbon sequestration, biogeochemistry, microbiome research, niche construction, and ecosystem engineering. The Sphagnome Project encompasses a genus-level sequencing effort that represents a new type of model system driven not only by genetic tractability, but by ecologically relevant questions and hypotheses.


Assuntos
Genoma de Planta/genética , Genômica , Modelos Biológicos , Sphagnopsida/genética , Adaptação Fisiológica , Evolução Biológica , Ecologia , Filogenia , Análise de Sequência de DNA , Sphagnopsida/citologia , Sphagnopsida/fisiologia
7.
Plant Physiol ; 174(2): 788-797, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584065

RESUMO

As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves.


Assuntos
Anthocerotophyta/anatomia & histologia , Fósseis , Células Vegetais , Estômatos de Plantas/citologia , Anthocerotophyta/citologia , Parede Celular/ultraestrutura , Tamanho do Genoma , Genoma de Planta , Microscopia Eletrônica de Transmissão , Pectinas/química , Células Vegetais/ultraestrutura , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética
8.
PLoS One ; 10(6): e0130092, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26068006

RESUMO

Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.


Assuntos
Subpopulações de Linfócitos B/patologia , Macrófagos/patologia , Infecções por Salmonella/patologia , Baço/patologia , Subpopulações de Linfócitos T/patologia , Animais , Subpopulações de Linfócitos B/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Infecções por Salmonella/sangue , Infecções por Salmonella/imunologia , Salmonella typhimurium , Baço/imunologia , Esplenomegalia , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...