Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 52(11): 2213-9, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26789273

RESUMO

The 2015 Faraday Discussion on single-molecule microscopy and spectroscopy brought together leading scientists involved in various topics of single-molecule research. It attracted almost a hundred delegates from a broad spectrum of backgrounds and experience levels - from experimentalists to theoreticians, from biologists to materials scientists, from masters students to Nobel Prize Laureates. The meeting was merely a reflection of how big of an impact the ability to detect individual molecules has had on science over the past quarter of a century. In the following we give an overview of the topics covered during this meeting and briefly highlight the content of each presentation.

2.
Nat Nanotechnol ; 10(5): 437-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25867941

RESUMO

Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies have addressed the general operation of graphene-based photothermoelectric devices and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster timescale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 fs. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 fs laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity of between 500 and 1,500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.

3.
J Phys Condens Matter ; 27(16): 164207, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25835338

RESUMO

Photoexcitation of graphene leads to an interesting sequence of phenomena, some of which can be exploited in optoelectronic devices based on graphene. In particular, the efficient and ultrafast generation of an electron distribution with an elevated electron temperature and the concomitant generation of a photo-thermoelectric voltage at symmetry-breaking interfaces is of interest for photosensing and light harvesting. Here, we experimentally study the generated photocurrent at the graphene-metal interface, focusing on the time-resolved photocurrent, the effects of photon energy, Fermi energy and light polarization. We show that a single framework based on photo-thermoelectric photocurrent generation explains all experimental results.

4.
J Phys Chem B ; 117(5): 1367-77, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23360328

RESUMO

We determine the relative positioning of water molecules in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes by measuring the rate of vibrational resonant (Förster) energy transfer between the water hydroxyl stretch vibrations. The rate of Förster energy transfer is strongly distance dependent and thus gives detailed information on the relative positioning of the water molecules. We determine the rate of intermolecular Förster energy by measuring the anisotropy dynamics of excited O-D stretch vibrations of HDO and D(2)O molecules with polarization-resolved femtosecond mid-infrared spectroscopy. We study the dynamics for deuterium fractions between 0.1 and 1 and for hydration levels between 2 and 12 water molecules per DOPC lipid molecule. We find that most of the water molecules hydrating the membrane are contained in nanoclusters and have an average intermolecular distance of 3.4 Å. The density of these nanoclusters increases with increasing hydration level of the DOPC membranes.


Assuntos
Membrana Celular/química , Transferência de Energia , Fosfatidilcolinas/química , Vibração , Água/química , Absorção , Cinética , Bicamadas Lipídicas/química , Modelos Moleculares , Conformação Molecular
5.
J Chem Phys ; 136(16): 164504, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22559493

RESUMO

We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.


Assuntos
Amidas/química , Vibração
6.
J Chem Phys ; 135(21): 214509, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22149804

RESUMO

We studied the vibrational relaxation dynamics of the bending mode (ν(2)) of the H(2)O water molecules in the presence of different salts (LiCl, LiBr, LiI, NaI, CsI, NaClO(4), and NaBF(4)). The linear and nonlinear spectra of the bending mode show distinct responses of water molecules hydrating the anions. We observe that the bending mode of water molecules that are hydrogen-bonded to an anion exhibits much slower relaxation rates (T(1)~1ps) than water molecules that are hydrogen-bonded to other water molecules (T(1)=400 fs). We find that the effect of the anion on the absorption spectrum and relaxation time constant of the water bending mode is not only determined by the strength of the hydrogen-bond interaction but also by the shape of the anion.


Assuntos
Sais/química , Água/química , Íons/química , Modelos Moleculares , Espectrofotometria Infravermelho
7.
J Phys Chem A ; 114(43): 11462-70, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20942502

RESUMO

We studied the pathways of vibrational energy relaxation of the amide I (~1660 cm⁻¹) and amide II (~1560 cm⁻¹) vibrational modes of N-methylacetamide (NMA) in CCl4 solution using two-color femtosecond vibrational spectroscopy. We measured the transient spectral dynamics upon excitation of each of these amide modes. The results show that there is no energy transfer between the amide I (AI) and amide II (AII) modes. Instead we find that the vibrational energy is transferred on a picosecond time scale to a common combination tone of lower-frequency modes. By use of polarization-resolved femtosecond pump-probe measurements we also study the reorientation dynamics of the NMA molecules and the relative angle between the transition dipole moments of the AI and AII vibrations. The spectral dynamics at later times after the excitation (>40 ps) reveal the presence of a dissociation process of the NMA aggregates, trimers, and higher order structures into dimers and monomers. By measuring the dissociation kinetics at different temperatures, we determined the activation energy of this dissociation E(a) = 35 ± 3 kJ mol⁻¹.


Assuntos
Acetamidas/química , Tetracloreto de Carbono/química , Soluções , Vibração
8.
Biophys J ; 97(9): 2484-92, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19883591

RESUMO

We study hydrated model membranes, consisting of stacked bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids, using terahertz time-domain spectroscopy and infrared spectroscopy. Terahertz spectroscopy enables the investigation of water dynamics, owing to its sensitivity to dielectric relaxation processes associated with water reorientation. By controlling the number of water molecules per lipid molecule in the system, we elucidate how the interplay between the model membrane and water molecules results in different water dynamics. For decreasing hydration levels, we observe the appearance of new types of water dynamics: the collective bulklike dynamics become less pronounced, whereas an increased amount of both very slowly reorienting (i.e., irrotational) and very rapidly reorienting (i.e., fast) water molecules appear. Temperature-dependent measurements reveal the interconversion between the three distinct types of water present in the system.


Assuntos
Biofísica/métodos , Bicamadas Lipídicas/química , Espectroscopia Terahertz/métodos , Água/química , Anisotropia , Ligação de Hidrogênio , Lipídeos/química , Modelos Estatísticos , Nêutrons , Fosfatidilcolinas/química , Espectrofotometria Infravermelho/métodos , Temperatura , Fatores de Tempo
9.
Phys Chem Chem Phys ; 11(40): 9033-8, 2009 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19812822

RESUMO

We report on a study of the vibrational energy relaxation and resonant vibrational (Förster) energy transfer of the OD vibrations of D2O and mixtures of D2O and H2O using femtosecond mid-infrared spectroscopy. We observe the lifetime of the OD vibrations of bulk D2O to be 400 +/- 30 fs. The rate of the Förster energy transfer is measured via the dynamics of the anisotropy of the OD vibrational excitation. For a solution of 0.5% D2O in H2O, resonant energy transfer is negligible, and the anisotropy shows a single exponential decay with a time constant of 2.6 +/- 0.1 ps, representing the time scale of the molecular reorientation. With increasing concentration, the anisotropy decay becomes faster and non-exponential, showing the increased contribution of resonant energy transfer between the OD vibrations. We determine the Förster radius of the OD vibration of HDO in H2O to be r0 = 2.3 +/- 0.2 A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...