Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cognition ; 238: 105481, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37182405

RESUMO

Children appear to have some arithmetic abilities before formal instruction in school, but the extent of these abilities as well as the mechanisms underlying them are poorly understood. Over two studies, an initial exploratory study of preschool children in the U.S. (N = 207; Age = 2.89-4.30 years) and a pre-registered replication of preschool children in Italy (N = 130; Age = 3-6.33 years), we documented some basic behavioral signatures of exact arithmetic using a non-symbolic subtraction task. Furthermore, we investigated the underlying mechanisms by analyzing the relationship between individual differences in exact subtraction and assessments of other numerical and non-numerical abilities. Across both studies, children performed above chance on the exact non-symbolic arithmetic task, generally showing better performance on problems involving smaller quantities compared to those involving larger quantities. Furthermore, individual differences in non-verbal approximate numerical abilities and exact cardinal number knowledge were related to different aspects of subtraction performance. Specifically, non-verbal approximate numerical abilities were related to subtraction performance in older but not younger children. Across both studies we found evidence that cardinal number knowledge was related to performance on subtraction problems where the answer was zero (i.e., subtractive negation problems). Moreover, subtractive negation problems were only solved above chance by children who had a basic understanding of cardinality. Together these finding suggest that core non-verbal numerical abilities, as well as emerging knowledge of symbolic numbers provide a basis for some, albeit limited, exact arithmetic abilities before formal schooling.


Assuntos
Individualidade , Pré-Escolar , Humanos , Idoso , Criança , Matemática
2.
Dev Sci ; 26(6): e13386, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36869432

RESUMO

Preverbal infants spontaneously represent the number of objects in collections. Is this 'sense of number' (also referred to as Approximate Number System, ANS) part of the cognitive foundations of mathematical skills? Multiple studies reported a correlation between the ANS and mathematical achievement in children. However, some have suggested that such correlation might be mediated by general-purpose inhibitory skills. We addressed the question using a longitudinal approach: we tested the ANS of 60 12 months old infants and, when they were 4 years old (final N = 40), their symbolic math achievement as well as general intelligence and inhibitory skills. Results showed that the ANS at 12 months is a specific predictor of later maths skills independent from general intelligence or inhibitory skills. The correlation between ANS and maths persists when both abilities are measured at four years. These results confirm that the ANS has an early, specific and longstanding relation with mathematical abilities in childhood. RESEARCH HIGHLIGHTS: In the literature there is a lively debate about the correlation between the ANS and maths skills. We longitudinally tested a sample of 60 preverbal infants at 12 months and rested them at 4 years (final sample of 40 infants). The ANS tested at 12 months predicted later symbolic mathematical skills at 4 years, even when controlling for inhibition, general intelligence and perceptual skills. The ANS tested at 4 years remained linked with symbolic maths skills, confirming this early and longstanding relation in childhood.

3.
Dev Sci ; 26(3): e13316, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36028996

RESUMO

A converging body of evidence from neuroimaging, behavioral, and neuropsychology studies suggests that different arithmetic operations rely on distinct neuro-cognitive processes: while addition and subtraction may rely more on visuospatial reasoning, multiplication would depend more on verbal abilities. In this paper, we tested this hypothesis in a longitudinal study measuring language and visuospatial skills in 358 preschoolers, and testing their mental calculation skills at the beginning of middle school. Language skills at 5.5 years significantly predicted multiplication, but not addition nor subtraction scores at 11.5 years. Conversely, early visuospatial skills predicted addition and subtraction, but not multiplication scores. These results provide strong support for the existence of a double dissociation in mental arithmetic operations, and demonstrate the existence of long-lasting links between language/visuospatial skills and specific calculation abilities.


Assuntos
Cognição , Resolução de Problemas , Humanos , Pré-Escolar , Criança , Estudos Longitudinais , Idioma , Escolaridade
4.
Infancy ; 28(2): 206-217, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36135719

RESUMO

Inter-individual differences in infants' numerosity processing have been assessed using a change detection paradigm, where participants were presented with two concurrent streams of images, one alternating between two numerosities and the other showing one constant numerosity. While most infants look longer at the changing stream in this paradigm, the reasons underlying these preferences have remained unclear. We suggest that, besides being attracted by numerosity changes, infants perhaps also respond to the alternating pattern of the changing stream. We conducted two experiments (N = 32) with 6-month-old infants to assess this hypothesis. In the first experiment, infants responded to changes in numerosity even when the changing stream showed numerosities in an unpredictable random order. In the second experiment, infants did not display any preference when an alternating stream was pitted against a random stream. These findings do not provide evidence that the alternating pattern of the changing stream contributes to drive infants' preferences. Instead, around the age of 6 months, infants' responses in the numerosity change detection paradigm appear to be mainly driven by changes in numerosity, with different levels of preference reflecting inter-individual difference in the acuity of numerosity perception.


Assuntos
Cognição , Conceitos Matemáticos , Pré-Escolar , Humanos , Lactente
5.
Front Hum Neurosci ; 15: 751098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867244

RESUMO

Humans can quickly approximate how many objects are in a visual image, but no clear consensus has been achieved on the cognitive resources underlying this ability. Previous work has lent support to the notion that mechanisms which explicitly represent the locations of multiple objects in the visual scene within a mental map are critical for both visuo-spatial working memory and enumeration (at least for relatively small numbers of items). Regarding the cognitive underpinnings of large numerosity perception, an issue currently subject to much controversy is why numerosity estimates are often non-veridical (i.e., susceptible to biases from non-numerical quantities). Such biases have been found to be particularly pronounced in individuals with developmental dyscalculia (DD), a learning disability affecting the acquisition of arithmetic skills. Motivated by findings showing that DD individuals are also often impaired in visuo-spatial working memory, we hypothesized that resources supporting this type of working memory, which allow for the simultaneous identification of multiple objects, might also be critical for precise and unbiased perception of larger numerosities. We therefore tested whether loading working memory of healthy adult participants during discrimination of large numerosities would lead to increased interference from non-numerical quantities. Participants performed a numerosity discrimination task on multi-item arrays in which numerical and non-numerical stimulus dimensions varied congruently or incongruently relative to each other, either in isolation or in the context of a concurrent visuo-spatial or verbal working memory task. During performance of the visuo-spatial, but not verbal, working memory task, precision in numerosity discrimination decreased, participants' choices became strongly biased by item size, and the strength of this bias correlated with measures of arithmetical skills. Moreover, the interference between numerosity and working memory tasks was bidirectional, with number discrimination impacting visuo-spatial (but not verbal) performance. Overall, these results suggest that representing visual numerosity in a way that is unbiased by non-numerical quantities relies on processes which explicitly segregate/identify the locations of multiple objects that are shared with visuo-spatial (but not verbal) working memory. This shared resource may potentially be impaired in DD, explaining the observed co-occurrence of working memory and numerosity discrimination deficits in this clinical population.

6.
Commun Biol ; 4(1): 1294, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785757

RESUMO

When humans mentally "navigate" bidimensional uniform conceptual spaces, they recruit the same grid-like and distance codes typically evoked when exploring the physical environment. Here, using fMRI, we show evidence that conceptual navigation also elicits another kind of spatial code: that of absolute direction. This code is mostly localized in the medial parietal cortex, where its strength predicts participants' comparative semantic judgments. It may provide a complementary mechanism for conceptual navigation outside the hippocampal formation.


Assuntos
Hipocampo/fisiologia , Semântica , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Adulto , Feminino , Humanos , Itália , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
7.
PLoS One ; 16(11): e0259775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780526

RESUMO

Numeracy is of critical importance for scholastic success and modern-day living, but the precise mechanisms that drive its development are poorly understood. Here we used novel experimental training methods to begin to investigate the role of symbols in the development of numeracy in preschool-aged children. We assigned pre-school children in the U.S. and Italy (N = 215; Mean age = 49.15 months) to play one of five versions of a computer-based numerical comparison game for two weeks. The different versions of the game were equated on basic features of gameplay and demands but systematically varied in numerical content. Critically, some versions included non-symbolic numerical comparisons only, while others combined non-symbolic numerical comparison with symbolic aids of various types. Before and after training we assessed four components of early numeracy: counting proficiency, non-symbolic numerical comparison, one-to-one correspondence, and arithmetic set transformation. We found that overall children showed improvement in most of these components after completing these short trainings. However, children trained on numerical comparisons with symbolic aids made larger gains on assessments of one-to-one correspondence and arithmetic transformation compared to children whose training involved non-symbolic numerical comparison only. Further exploratory analyses suggested that, although there were no major differences between children trained with verbal symbols (e.g., verbal counting) and non-verbal visuo-spatial symbols (i.e., abacus counting), the gains in one-to-one correspondence may have been driven by abacus training, while the gains in non-verbal arithmetic transformations may have been driven by verbal training. These results provide initial evidence that the introduction of symbols may contribute to the emergence of numeracy by enhancing the capacity for thinking about exact equality and the numerical effects of set transformations. More broadly, this study provides an empirical basis to motivate further focused study of the processes by which children's mastery of symbols influences children's developing mastery of numeracy.


Assuntos
Matemática , Coleta de Dados , Escolaridade , Humanos
8.
Neuroimage ; 235: 118016, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819609

RESUMO

When primates (both human and non-human) learn to categorize simple visual or acoustic stimuli by means of non-verbal matching tasks, two types of changes occur in their brain: early sensory cortices increase the precision with which they encode sensory information, and parietal and lateral prefrontal cortices develop a categorical response to the stimuli. Contrary to non-human animals, however, our species mostly constructs categories using linguistic labels. Moreover, we naturally tend to define categories by means of multiple sensory features of the stimuli. Here we trained adult subjects to parse a novel audiovisual stimulus space into 4 orthogonal categories, by associating each category to a specific symbol. We then used multi-voxel pattern analysis (MVPA) to show that during a cross-format category repetition detection task three neural representational changes were detectable. First, visual and acoustic cortices increased both precision and selectivity to their preferred sensory feature, displaying increased sensory segregation. Second, a frontoparietal network developed a multisensory object-specific response. Third, the right hippocampus and, at least to some extent, the left angular gyrus, developed a shared representational code common to symbols and objects. In particular, the right hippocampus displayed the highest level of abstraction and generalization from a format to the other, and also predicted symbolic categorization performance outside the scanner. Taken together, these results indicate that when humans categorize multisensory objects by means of language the set of changes occurring in the brain only partially overlaps with that described by classical models of non-verbal unisensory categorization in primates.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Lobo Parietal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia
9.
Hippocampus ; 31(6): 557-568, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675679

RESUMO

A fundamental skill of an intelligent mind is that of being able to rapidly discover the structural organization underlying the relations across the objects or the events in the world. Humans, thanks to language, master this skill. For example, a child learning that dolphins and cats can also be referred to as mammals, not only will infer the presence of a hierarchical organization for which dolphins and cats are subordinate exemplars of the category mammals, but will also derive that dolphins are, at least at one conceptual level, more similar to cats than to sharks, despite their indisputable higher perceptual similarity to the latter. The hippocampal-entorhinal system, classically known for its involvement in relational and inferential memory, is a likely candidate to construct and hold these complex relational structures between concepts. To test this hypothesis, we trained healthy human adults to organize a novel audio-visual object space into categories labeled with novel words. Crucially, a hierarchical taxonomy existed between the object categories, and participants discovered it via inference during a simple associative object-to-word training. Using functional MRI after learning, and a combination of ROI-based multivariate analyses, we found that both the mid-anterior hippocampus and the entorhinal cortex represented the inferred hierarchical structure between words: subordinate-level words were represented more similarly to their related superordinate than to unrelated ones. This was paired, in the entorhinal cortex, by an additional signature of internalized structural representation of nested hierarchy: words referring to subordinate concepts belonging to the same superordinate category were represented more similarly compared with those not belonging to the same superordinate level: interestingly, this similarity was never directly taught to subjects nor it was made explicit during the task, but only indirectly derived through a logical inferential process and, crucially, contrasted the evidence coming from the definitional perceptual properties of the concepts. None of these results were observed before learning, when the same words were not yet semantically organized. A whole-brain searchlight revealed that the effect in the entorhinal cortex extends to a wider network of areas, encompassing the prefrontal, temporal, and parietal cortices, partially overlapping with the semantic network.


Assuntos
Mapeamento Encefálico , Formação de Conceito , Animais , Mapeamento Encefálico/métodos , Córtex Entorrinal , Hipocampo , Imageamento por Ressonância Magnética
10.
Neuroimage ; 232: 117876, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33636346

RESUMO

Relational information about items in memory is thought to be represented in our brain thanks to an internal comprehensive model, also referred to as a "cognitive map". In the human neuroimaging literature, two signatures of bi-dimensional cognitive maps have been reported: the grid-like code and the distance-dependent code. While these kinds of representation were previously observed during spatial navigation and, more recently, during processing of perceptual stimuli, it is still an open question whether they also underlie the representation of the most basic items of language: words. Here we taught human participants the meaning of novel words as arbitrary labels for a set of audiovisual objects varying orthogonally in size and sound. The novel words were therefore conceivable as points in a navigable 2D map of meaning. While subjects performed a word comparison task, we recorded their brain activity using functional magnetic resonance imaging (fMRI). By applying a combination of representational similarity and fMRI-adaptation analyses, we found evidence of (i) a grid-like code, in the right postero-medial entorhinal cortex, representing the relative angular positions of words in the word space, and (ii) a distance-dependent code, in medial prefrontal, orbitofrontal, and mid-cingulate cortices, representing the Euclidean distance between words. Additionally, we found evidence that the brain also separately represents the single dimensions of word meaning: their implied size, encoded in visual areas, and their implied sound, in Heschl's gyrus/Insula. These results support the idea that the meaning of words, when they are organized along two dimensions, is represented in the human brain across multiple maps of different dimensionality. SIGNIFICANT STATEMENT: How do we represent the meaning of words and perform comparative judgements on them in our brain? According to influential theories, concepts are conceivable as points of an internal map (where distance represents similarity) that, as the physical space, can be mentally navigated. Here we use fMRI to show that when humans compare newly learnt words, they recruit a grid-like and a distance code, the same types of neural codes that, in mammals, represent relations between locations in the environment and support physical navigation between them.


Assuntos
Mapeamento Encefálico/métodos , Córtex Entorrinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Semântica , Testes de Associação de Palavras , Adulto , Cognição/fisiologia , Córtex Entorrinal/fisiologia , Feminino , Humanos , Idioma , Masculino , Reconhecimento Psicológico/fisiologia , Adulto Jovem
11.
PLoS One ; 15(12): e0244578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382740

RESUMO

It is believed that the approximate estimation of large sets and the exact quantification of small sets (subitizing) are supported by two different systems, the Approximate Number System (ANS) and Object Tracking System (OTS), respectively. It is a current matter of debate whether they are both impaired in developmental dyscalculia (DD), a specific learning disability in symbolic number processing and calculation. Here we tackled this question by asking 32 DD children and 32 controls to perform a series of tasks on visually presented sets, including exact enumeration of small sets as well as comparison of large, uncountable sets. In children with DD, we found poor sensitivity in processing large numerosities, but we failed to find impairments in the exact enumeration of sets within the subitizing range. We also observed deficits in visual short-term memory skills in children with dyscalculia that, however, did not account for their low ANS acuity. Taken together, these results point to a dissociation between quantification skills in dyscalculia, they highlight a link between DD and low ANS acuity and provide support for the notion that DD is a multifaceted disability that covers multiple cognitive skills.


Assuntos
Discalculia/psicologia , Memória de Curto Prazo , Adolescente , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino , Matemática , Testes Neuropsicológicos , Memória Espacial
12.
Sci Data ; 7(1): 353, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067452

RESUMO

We present an extension of the Individual Brain Charting dataset -a high spatial-resolution, multi-task, functional Magnetic Resonance Imaging dataset, intended to support the investigation on the functional principles governing cognition in the human brain. The concomitant data acquisition from the same 12 participants, in the same environment, allows to obtain in the long run finer cognitive topographies, free from inter-subject and inter-site variability. This second release provides more data from psychological domains present in the first release, and also yields data featuring new ones. It includes tasks on e.g. mental time travel, reward, theory-of-mind, pain, numerosity, self-reference effect and speech recognition. In total, 13 tasks with 86 contrasts were added to the dataset and 63 new components were included in the cognitive description of the ensuing contrasts. As the dataset becomes larger, the collection of the corresponding topographies becomes more comprehensive, leading to better brain-atlasing frameworks. This dataset is an open-access facility; raw data and derivatives are publicly available in neuroimaging repositories.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Cognição , Imageamento por Ressonância Magnética , Humanos
13.
Handb Clin Neurol ; 174: 61-75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32977896

RESUMO

Developmental dyscalculia (DD) is a developmental learning disability that manifests as a persistent difficulty in comprehending even the most basic numeric and arithmetic concepts, despite normal intelligence and schooling opportunities. Given the predominant use of numbers in modern society, this condition can pose major challenges in the sufferer's everyday life, both in personal and professional development. Since, to date, we still lack a universally recognized and psychometrically driven definition of DD, its diagnosis has been applied to a wide variety of cognitive profiles. In this chapter, we review the behavioral and neural characterization of DD as well as the different neurocognitive and etiologic accounts of this neurodevelopmental disorder. We underline the multicomponential nature of this heterogeneous disability: different aspects of mathematical competence can be affected by both the suboptimal recruitment of general cognitive functions supporting mathematical cognition (such as attention, memory, and cognitive control) and specific deficits in mastering numeric concepts and operations. Accordingly, both intervention paradigms focused on core numeric abilities and more comprehensive protocols targeting multiple neurocognitive systems have provided evidence for effective positive outcomes.


Assuntos
Discalculia , Atenção , Cognição , Deficiências do Desenvolvimento , Discalculia/diagnóstico , Discalculia/epidemiologia , Humanos , Memória
14.
J Vis ; 20(8): 7, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756882

RESUMO

Visual crowding refers to the inability to identify objects when surrounded by other similar items. Crowding-like mechanisms are thought to play a key role in numerical perception by determining the sensory mechanisms through which ensembles are perceived. Enhanced visual crowding might hence prevent the normal development of a system involved in segregating and perceiving discrete numbers of items and ultimately the acquisition of more abstract numerical skills. Here, we investigated whether excessive crowding occurs in developmental dyscalculia (DD), a neurodevelopmental disorder characterized by difficulty in learning the most basic numerical and arithmetical concepts, and whether it is found independently of associated major reading and attentional difficulties. We measured spatial crowding in two groups of adult individuals with DD and control subjects. In separate experiments, participants were asked to discriminate the orientation of a Gabor patch either in isolation or under spatial crowding. Orientation discrimination thresholds were comparable across groups when stimuli were shown in isolation, yet they were much higher for the DD group with respect to the control group when the target was crowded by closely neighbouring flanking gratings. The difficulty in discriminating orientation (as reflected by the combination of accuracy and reaction times) in the DD compared to the control group persisted over several larger target flanker distances. Finally, we found that the degree of such spatial crowding correlated with impairments in mathematical abilities even when controlling for visual attention and reading skills. These results suggest that excessive crowding effects might be a characteristic of DD, independent of other associated neurodevelopmental disorders.


Assuntos
Aglomeração , Discalculia/fisiopatologia , Percepção Visual/fisiologia , Adulto , Atenção , Feminino , Humanos , Aprendizagem , Masculino , Testes Neuropsicológicos , Orientação Espacial , Reconhecimento Visual de Modelos , Tempo de Reação , Leitura , Adulto Jovem
15.
J Exp Child Psychol ; 197: 104868, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32473381

RESUMO

We investigated 10-month-old infants' and adults' numerical expectations in scenarios where information on self-motion and static object features may give rise to numerically incongruent representations. A red circle or a blue box with yellow stripes appeared on the left side of a screen, moved autonomously sideways and then moved back behind the screen. Next, on the opposite side, an identical object was first brought in view by a hand and then pushed back behind the screen (Experiments 1 and 2). The screen was finally removed, revealing either one or two objects. Infants looked longer at one-object test events, suggesting that they expected to find two objects. Adults were also shown these animations and were asked for their numerical expectations. Contrary to infants, they expected one single object (Experiment 3). Whereas preverbal infants' numerical expectations appeared to be dominated by information on object autonomous and induced motion, adults' expectations were mainly guided by information about object shape, size, and color. These findings were discussed in relation to current models on the development of object individuation processes.


Assuntos
Sinais (Psicologia) , Percepção de Forma , Individuação , Percepção de Movimento , Psicologia da Criança , Adulto , Percepção de Cores , Feminino , Humanos , Lactente , Masculino , Orientação , Enquadramento Psicológico , Percepção de Tamanho
16.
J Neurosci ; 40(13): 2727-2736, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32060171

RESUMO

A recent proposal posits that humans might use the same neuronal machinery to support the representation of both spatial and nonspatial information, organizing concepts and memories using spatial codes. This view predicts that the same neuronal coding schemes characterizing navigation in the physical space (tuned to distance and direction) should underlie navigation of abstract semantic spaces, even if they are categorical and labeled by symbols. We constructed an artificial semantic environment by parsing a bidimensional audiovisual object space into four labeled categories. Before and after a nonspatial symbolic categorization training, 25 adults (15 females) were presented with pseudorandom sequences of objects and words during a functional MRI session. We reasoned that subsequent presentations of stimuli (either objects or words) referring to different categories implied implicit movements in the novel semantic space, and that such movements subtended specific distances and directions. Using whole-brain fMRI adaptation and searchlight model-based representational similarity analysis, we found evidence of both distance-based and direction-based responses in brain regions typically involved in spatial navigation: the medial prefrontal cortex and the right entorhinal cortex (EHC). After training, both regions encoded the distances between concepts, making it possible to recover a faithful bidimensional representation of the semantic space directly from their multivariate activity patterns, whereas the right EHC also exhibited a periodic modulation as a function of traveled direction. Our results indicate that the brain regions and coding schemes supporting relations and movements between spatial locations in mammals are "recycled" in humans to represent a bidimensional multisensory conceptual space during a symbolic categorization task.SIGNIFICANCE STATEMENT The hippocampal formation and the medial prefrontal cortex of mammals represent the surrounding physical space by encoding distances and directions between locations. Recent works suggested that humans use the same neural machinery to organize their memories as points of an internal map of experiences. We asked whether the same brain regions and neural codes supporting spatial navigation are recruited when humans use language to organize their knowledge of the world in categorical semantic representations. Using fMRI, we show that the medial prefrontal cortex and the entorhinal portion of the hippocampal formation represent the distances and the movement directions between concepts of a novel audiovisual semantic space, and that it was possible to reconstruct, from neural data, their relationships in memory.


Assuntos
Córtex Entorrinal/fisiologia , Córtex Pré-Frontal/fisiologia , Navegação Espacial/fisiologia , Adulto , Mapeamento Encefálico , Córtex Entorrinal/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Percepção Espacial/fisiologia , Adulto Jovem
17.
Elife ; 82019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31339490

RESUMO

Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this 'number sense', or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity.


Assuntos
Cognição , Vias Visuais/fisiologia , Percepção Visual , Adulto , Mapeamento Encefálico , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 116(10): 4625-4630, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30755519

RESUMO

Humans are endowed with an exceptional ability for detecting faces, a competence that, in adults, is supported by a set of face-specific cortical patches. Human newborns, already shortly after birth, preferentially orient to faces, even when they are presented in the form of highly schematic geometrical patterns vs. perceptually equivalent nonfacelike stimuli. The neural substrates underlying this early preference are still largely unexplored. Is the adult face-specific cortical circuit already active at birth, or does its specialization develop slowly as a function of experience and/or maturation? We measured EEG responses in 1- to 4-day-old awake, attentive human newborns to schematic facelike patterns and nonfacelike control stimuli, visually presented with slow oscillatory "peekaboo" dynamics (0.8 Hz) in a frequency-tagging design. Despite the limited duration of newborns' attention, reliable frequency-tagged responses could be estimated for each stimulus from the peak of the EEG power spectrum at the stimulation frequency. Upright facelike stimuli elicited a significantly stronger frequency-tagged response than inverted facelike controls in a large set of electrodes. Source reconstruction of the underlying cortical activity revealed the recruitment of a partially right-lateralized network comprising lateral occipitotemporal and medial parietal areas overlapping with the adult face-processing circuit. This result suggests that the cortical route specialized in face processing is already functional at birth.


Assuntos
Encéfalo/fisiologia , Reconhecimento Facial , Recém-Nascido/psicologia , Atenção , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Feminino , Humanos , Masculino
19.
Cortex ; 114: 90-101, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29655488

RESUMO

Areas of the primate intraparietal cortex have been identified as an important substrate of numerical cognition. In human fMRI studies, activity patterns in these and other areas have allowed researchers to read out the numerosity a subject is viewing, but the relation of such decodable information with behavioral numerical proficiency remains unknown. Here, we estimated the precision of behavioral numerosity discrimination (internal Weber fraction) in twelve adult subjects based on psychophysical testing in a delayed numerosity comparison task outside the scanner. FMRI data were then recorded during a similar task, to obtain the accuracy with which the same sample numerosities could be read out from evoked brain activity patterns, as a measure of the precision of the neuronal representation. Sample numerosities were decodable in both early visual and intra-parietal cortex with approximately equal accuracy on average. In parietal cortex, smaller numerosities were better discriminated than larger numerosities of the same ratio, paralleling smaller behavioral Weber fractions for smaller numerosities. Furthermore, in parietal but not early visual cortex, fMRI decoding performance was correlated with behavioral number discrimination acuity across subjects (subjects with a more precise behavioral Weber fraction measured prior to scanning showed greater discriminability of fMRI activity patterns in intraparietal cortex, and more specifically, the right LIP region). These results suggest a crucial role for intra-parietal cortex in supporting a numerical representation which is explicitly read out for numerical decisions and behavior.


Assuntos
Comportamento/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética , Lobo Parietal/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neurônios/fisiologia , Estimulação Luminosa/métodos , Córtex Visual/fisiologia
20.
J Cogn Neurosci ; 31(1): 95-108, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30156506

RESUMO

A single word (the noun "elephant") encapsulates a complex multidimensional meaning, including both perceptual ("big", "gray", "trumpeting") and conceptual ("mammal", "can be found in India") features. Opposing theories make different predictions as to whether different features (also conceivable as dimensions of the semantic space) are stored in similar neural regions and recovered with similar temporal dynamics during word reading. In this magnetoencephalography study, we tracked the brain activity of healthy human participants while reading single words varying orthogonally across three semantic dimensions: two perceptual ones (i.e., the average implied real-world size and the average strength of association with a prototypical sound) and a conceptual one (i.e., the semantic category). The results indicate that perceptual and conceptual representations are supported by partially segregated neural networks: Whereas visual and auditory dimensions are encoded in the phase coherence of low-frequency oscillations of occipital and superior temporal regions, respectively, semantic features are encoded in the power of low-frequency oscillations of anterior temporal and inferior parietal areas. However, despite the differences, these representations appear to emerge at the same latency: around 200 msec after stimulus onset. Taken together, these findings suggest that perceptual and conceptual dimensions of the semantic space are recovered automatically, rapidly, and in parallel during word reading.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Leitura , Semântica , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...