Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 165: 105252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33465683

RESUMO

The Laguna Estuarine System (LES), southern Brazil, suffers impacts from anthropogenic activities, releasing contaminants into the ecosystem. This study evaluated changes in biochemical and molecular biomarkers and contaminants concentrations in oysters Crassostrea gasar transplanted and kept for 1.5 and 7 days at three potentially contaminated sites (S1, S2, and S3) at LES. Metals varied spatiotemporally; S1 exhibited higher Ag and Pb concentrations, whereas Cd was present in S3. S2 was a transition site, impacted by Ag, Pb, or Cd, depending on the period. Organic contaminants concentrations were higher before transplantation, resulting in the downregulation of biotransformation genes transcripts levels. Phase II-related genes transcripts and metals showed positive correlations. Decreased levels of HSP90-like transcripts and antioxidant enzymes activity were related to increased pollutant loads. Integrated biomarker response index (IBR) analysis showed S1 and S3 as the most impacted sites after 1.5 and 7 days, respectively. Regardless of the scenario, LES contaminants pose a significant threat to aquatic biota.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Biomarcadores , Brasil , Ecossistema , Monitoramento Ambiental , Estuários , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
Sci Total Environ ; 678: 585-593, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31078849

RESUMO

Ocean acidification is a result of the decrease in the pH of marine water, caused mainly by the increase in CO2 released in the atmosphere and its consequent dissolution in seawater. These changes can be dramatic for marine organisms especially for oysters Crassostrea gasar if other stressors such as xenobiotics are present. The effect of pH changes (6.5, 7.0 and 8.2) was assessed on the transcript levels of biotransformation [cytochromes P450 (CYP2AU1, CYP2-like2) and glutathione S-transferase (GSTΩ-like)] and antioxidant [superoxide dismutase (SOD-like), catalase (CAT-like) and glutathione peroxidase (GPx-like)] genes, as well as enzyme activities [superoxide dismutase, (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferases transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH)] and lipid peroxidation (MDA) in the gills of Crassostrea gasar exposed to 100 µg·L-1 of phenanthrene (PHE) for 24 and 96 h. Likewise, the PHE burdens was evaluated in whole soft tissues of exposed oysters. The accumulation of PHE in oysters was independent of pH. However, acidification promoted a significant decrease in the transcript levels of some protective genes (24 h exposure: CYP2AU1 and GSTΩ-like; 96 h exposure: CAT-like and GPx-like), which was not observed in the presence of PHE. Activities of GST, CAT and SOD enzymes increased in the oysters exposed to PHE at the control pH (8.2), but at a lower pH values, this activation was suppressed, and no changes were observed in the G6PDH activity and MDA levels. Biotransformation genes showed better responses after 24 h, and antioxidant-coding genes after 96 h, along with the activities of antioxidant enzymes (SOD, CAT), probably because biotransformation of PHE increases the generation of reactive oxygen species. The lack of change in MDA levels suggests that antioxidant modulation efficiently prevented oxidative stress. The effect of pH on the responses to PHE exposure should be taken into account before using these and any other genes as potential molecular biomarkers for PHE exposure.


Assuntos
Crassostrea/fisiologia , Fenantrenos/efeitos adversos , Prótons/efeitos adversos , Água do Mar/química , Poluentes Químicos da Água/efeitos adversos , Animais , Crassostrea/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Distribuição Aleatória , Estresse Fisiológico , Fatores de Tempo
3.
Aquat Toxicol ; 177: 146-55, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27286572

RESUMO

Understanding the mechanism of phenanthrene (PHE) biotransformation and related cellular responses in bivalves can be an important tool to elucidate the risks of polycyclic aromatic hydrocarbons (PAHs) to aquatic organisms. In the present study it was analyzed the transcriptional levels of 13 biotransformation genes related to cytochrome P450 (CYP), glutathione S-transferase (GST), sulfotransferase (SULT), flavin-containing monooxygenase and fatty acid-binding proteins by qPCR in gill of scallops Nodipecten nodosus exposed for 24 or 96h to 50 or 200µgL(-1) PHE (equivalent to 0.28 and 1.12µM, respectively), followed by depuration in clean water for 96h (DEP). Likewise, it was quantified the activity of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), GST and levels of lipid peroxidation. Increased transcriptional levels of CYP2UI-like, CYP2D20-like, CYP3A11-like, GSTomega-like, SULT1B1-like genes were detected in organisms exposed to PHE for 24 or 96h. In parallel, GR and GPX activities increased after 96h exposure to 200µgL(-1) PHE and G6PDH activity increased after 24h exposure to 50µgL(-1) PHE. This enhancement of antioxidant and phase I and II biotransformation systems may be related to the 2.7 and 12.5 fold increases in PHE bioaccumulation after 96h exposure to 50 and 200µgL(-1) PHE, respectively. Interestingly, DEP caused reestablishment of GPX and GR activity, as well as to the transcript levels of all upregulated biotransformation genes (except for SULT1B1-like). Bioaccumulated PHE levels decreased 2.5-2.9 fold after depuration, although some biochemical and molecular modifications were still present. Lipid peroxidation levels remained lower in animals exposed to 200µgL(-1) PHE for 24h and DEP. These data indicate that N. nodosus is able to induce an antioxidant and biotransformation-related response to PHE exposure, counteracting its toxicity, and DEP can be an effective protocol for bivalve depuration after PHE exposure.


Assuntos
Brânquias/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Pectinidae/efeitos dos fármacos , Fenantrenos/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Biotransformação/efeitos dos fármacos , Biotransformação/genética , Relação Dose-Resposta a Droga , Brânquias/metabolismo , Peroxidação de Lipídeos/genética , Pectinidae/genética , Pectinidae/metabolismo , Fenantrenos/metabolismo , Testes de Toxicidade , Poluentes Químicos da Água/metabolismo
4.
Environ Sci Pollut Res Int ; 22(22): 17375-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25595931

RESUMO

Pharmaceuticals, such as anti-inflammatory nonsteroidal drugs, are frequently detected in aquatic ecosystems. Studies about the effects of these substances in nontarget organisms, such as bivalves, are relevant. The aim of this study was to evaluate the effects on antioxidant status caused by ibuprofen (IBU) in oysters Crassostrea gigas exposed for 1, 4, and 7 days at concentrations 1 and 100 µg L(-1). Levels of IBU in tissues of oysters, as well as cell viability of hemocytes, were measured. The transcription of cytochrome P450 genes (CYP2AU2, CYP356A1, CYP3071A1, CYP30C1), glutathione S-transferase isoforms (GST-ω-like and GST-π-like), cyclooxygenase-like (COX-like), fatty acid binding protein-like (FABP-like), caspase-like, heat shock protein-like (HSP70-like), catalase-like (CAT-like), and the activity of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione S-transferase (GST) were also evaluated in the gills of oysters. The highest levels of IBU were observed in animals exposed to 100 µg L(-1). A significant upregulation of CYP2AU1, CYP356A1, CYP3071A1, GST-ω-like, GST-π-like, COX-like, and FABP-like was observed in oysters exposed to IBU under different experimental conditions. Oysters exposed to 1 µg L(-1) for 7 days showed a significantly higher transcription of CYP2AU2, CYP356A1, CYP3071A1, GST-ω-like, and GST-π-like but lower GR activity. In conclusion, C. gigas exposed to environmentally relevant concentrations of IBU (1 µg L(-1)) exhibited increased transcription of certain genes and alterations on antioxidant and auxiliary enzymes, which could, in the the long term, cause damages to exposed organisms.


Assuntos
Crassostrea/efeitos dos fármacos , Crassostrea/metabolismo , Citotoxinas/toxicidade , Ecotoxicologia , Ibuprofeno/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Crassostrea/citologia , Crassostrea/genética , Relação Dose-Resposta a Droga , Brânquias/citologia , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hemócitos/citologia , Hemócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...