Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2015: 427829, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25866503

RESUMO

In recent years numerous improvements have been made in multiple-electrode recordings (i.e., parallel spike-train recordings) and spike sorting to the extent that nowadays it is possible to monitor the activity of up to hundreds of neurons simultaneously. Due to these improvements it is now potentially possible to identify assembly activity (roughly understood as significant synchronous spiking of a group of neurons) from these recordings, which-if it can be demonstrated reliably-would significantly improve our understanding of neural activity and neural coding. However, several methodological problems remain when trying to do so and, among them, a principal one is the combinatorial explosion that one faces when considering all potential neuronal assemblies, since in principle every subset of the recorded neurons constitutes a candidate set for an assembly. We present several statistical tests to identify assembly neurons (i.e., neurons that participate in a neuronal assembly) from parallel spike trains with the aim of reducing the set of neurons to a relevant subset of them and this way ease the task of identifying neuronal assemblies in further analyses. These tests are an improvement of those introduced in the work by Berger et al. (2010) based on additional features like spike weight or pairwise overlap and on alternative ways to identify spike coincidences (e.g., by avoiding time binning, which tends to lose information).


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Processamento Eletrônico de Dados , Eletrofisiologia/métodos
2.
Front Comput Neurosci ; 7: 132, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167487

RESUMO

We recently proposed frequent itemset mining (FIM) as a method to perform an optimized search for patterns of synchronous spikes (item sets) in massively parallel spike trains. This search outputs the occurrence count (support) of individual patterns that are not trivially explained by the counts of any superset (closed frequent item sets). The number of patterns found by FIM makes direct statistical tests infeasible due to severe multiple testing. To overcome this issue, we proposed to test the significance not of individual patterns, but instead of their signatures, defined as the pairs of pattern size z and support c. Here, we derive in detail a statistical test for the significance of the signatures under the null hypothesis of full independence (pattern spectrum filtering, PSF) by means of surrogate data. As a result, injected spike patterns that mimic assembly activity are well detected, yielding a low false negative rate. However, this approach is prone to additionally classify patterns resulting from chance overlap of real assembly activity and background spiking as significant. These patterns represent false positives with respect to the null hypothesis of having one assembly of given signature embedded in otherwise independent spiking activity. We propose the additional method of pattern set reduction (PSR) to remove these false positives by conditional filtering. By employing stochastic simulations of parallel spike trains with correlated activity in form of injected spike synchrony in subsets of the neurons, we demonstrate for a range of parameter settings that the analysis scheme composed of FIM, PSF and PSR allows to reliably detect active assemblies in massively parallel spike trains.

3.
Front Neuroinform ; 7: 9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755010

RESUMO

Cell assemblies, defined as groups of neurons exhibiting precise spike coordination, were proposed as a model of network processing in the cortex. Fortunately, in recent years considerable progress has been made in multi-electrode recordings, which enable recording massively parallel spike trains of hundred(s) of neurons simultaneously. However, due to the challenges inherent in multivariate approaches, most studies in favor of cortical cell assemblies still resorted to analyzing pairwise interactions. However, to recover the underlying correlation structures, higher-order correlations need to be identified directly. Inspired by the Accretion method proposed by Gerstein et al. (1978) we propose a new assembly detection method based on frequent item set mining (FIM). In contrast to Accretion, FIM searches effectively and without redundancy for individual spike patterns that exceed a given support threshold. We study different search methods, with which the space of potential cell assemblies may be explored, as well as different test statistics and subset conditions with which candidate assemblies may be assessed and filtered. It turns out that a core challenge of cell assembly detection is the problem of multiple testing, which causes a large number of false discoveries. Unfortunately, criteria that address individual candidate assemblies and try to assess them with statistical tests and/or subset conditions do not help much to tackle this problem. The core idea of our new method is that in order to cope with the multiple testing problem one has to shift the focus of statistical testing from specific assemblies (consisting of a specific set of neurons) to spike patterns of a certain size (i.e., with a certain number of neurons). This significantly reduces the number of necessary tests, thus alleviating the multiple testing problem. We demonstrate that our method is able to reliably suppress false discoveries, while it is still very sensitive in discovering synchronous activity. Since we exploit high-speed computational techniques from FIM for the tests, our method is also computationally efficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...