Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Am J Physiol Endocrinol Metab ; 305(5): E649-59, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23880311

RESUMO

Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRß and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.


Assuntos
Hipotálamo/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Western Blotting , Corticosterona/urina , Hipotálamo/enzimologia , Imuno-Histoquímica , Inflamação/enzimologia , Insulina/sangue , Interleucina-6/sangue , Interleucina-6/metabolismo , Leptina/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/enzimologia , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais , Organismos Livres de Patógenos Específicos
4.
PLoS Biol ; 9(12): e1001212, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22162948

RESUMO

Environmental factors and host genetics interact to control the gut microbiota, which may have a role in the development of obesity and insulin resistance. TLR2-deficient mice, under germ-free conditions, are protected from diet-induced insulin resistance. It is possible that the presence of gut microbiota could reverse the phenotype of an animal, inducing insulin resistance in an animal genetically determined to have increased insulin sensitivity, such as the TLR2 KO mice. In the present study, we investigated the influence of gut microbiota on metabolic parameters, glucose tolerance, insulin sensitivity, and signaling of TLR2-deficient mice. We investigated the gut microbiota (by metagenomics), the metabolic characteristics, and insulin signaling in TLR2 knockout (KO) mice in a non-germ free facility. Results showed that the loss of TLR2 in conventionalized mice results in a phenotype reminiscent of metabolic syndrome, characterized by differences in the gut microbiota, with a 3-fold increase in Firmicutes and a slight increase in Bacteroidetes compared with controls. These changes in gut microbiota were accompanied by an increase in LPS absorption, subclinical inflammation, insulin resistance, glucose intolerance, and later, obesity. In addition, this sequence of events was reproduced in WT mice by microbiota transplantation and was also reversed by antibiotics. At the molecular level the mechanism was unique, with activation of TLR4 associated with ER stress and JNK activation, but no activation of the IKKß-IκB-NFκB pathway. Our data also showed that in TLR2 KO mice there was a reduction in regulatory T cell in visceral fat, suggesting that this modulation may also contribute to the insulin resistance of these animals. Our results emphasize the role of microbiota in the complex network of molecular and cellular interactions that link genotype to phenotype and have potential implications for common human disorders involving obesity, diabetes, and even other immunological disorders.


Assuntos
Resistência à Insulina , Intestinos/microbiologia , Síndrome Metabólica/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Antibacterianos/uso terapêutico , Cruzamentos Genéticos , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Síndrome Metabólica/tratamento farmacológico , Metagenômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Linfócitos T Reguladores/imunologia , Receptor 2 Toll-Like/genética
5.
J Biol Chem ; 284(52): 36213-36222, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19858212

RESUMO

In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-alpha (TNF-alpha) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-alpha inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O(2) consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O(2) consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-alpha signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.


Assuntos
Obesidade/metabolismo , Consumo de Oxigênio , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Termogênese , Fator de Necrose Tumoral alfa/metabolismo , Gordura Abdominal/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Inflamação/genética , Inflamação/metabolismo , Insulina/metabolismo , Canais Iônicos/metabolismo , Janus Quinase 2/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/genética , Ratos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Transcrição STAT3/metabolismo , Proteína Desacopladora 1 , Proteína Desacopladora 3
6.
Circ Res ; 103(8): 813-24, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18757826

RESUMO

The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stretch (15% above initial length) enhanced FAK phosphorylation at Tyr397 and reduced FAK/Shp2 association and phosphatase activity in anti-Shp2 precipitates. Recombinant Shp2 C-terminal protein tyrosine phosphatase domain (Shp2-PTP) interacted with nonphosphorylated recombinant FAK and dephosphorylated FAK immunoprecipitated from NRVMs. Depletion of Shp2 by specific small interfering RNA increased the phosphorylation of FAK Tyr397, Src Tyr418, AKT Ser473, TSC2 Thr1462, and S6 kinase Thr389 and induced hypertrophy of nonstretched NRVMs. Inhibition of FAK/Src activity by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine} abolished the phosphorylation of AKT, TSC2, and S6 kinase, as well as the hypertrophy of NRVMs induced by Shp2 depletion. Inhibition of mTOR (mammalian target of rapamycin) with rapamycin blunted the hypertrophy in NRVMs depleted of Shp2. NRVMs treated with PP2 or depleted of FAK by specific small interfering RNA were defective in FAK, Src, extracellular signal-regulated kinase, AKT, TSC2, and S6 kinase phosphorylation, as well as in the hypertrophic response to prolonged stretch. The stretch-induced hypertrophy of NRVMs was also prevented by rapamycin. These findings demonstrate that basal Shp2 tyrosine phosphatase activity controls the size of cardiomyocytes by downregulating a pathway that involves FAK/Src and mTOR signaling pathways.


Assuntos
Cardiomegalia/enzimologia , Tamanho Celular , Mecanotransdução Celular , Miócitos Cardíacos/enzimologia , Proteínas Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Quinases da Família src/metabolismo , Animais , Animais Recém-Nascidos , Cardiomegalia/patologia , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Transfecção , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/antagonistas & inibidores
7.
J Physiol ; 577(Pt 3): 997-1007, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17008371

RESUMO

Lifestyle interventions including exercise programmes are cornerstones in the prevention of obesity-related diabetes. In this study, we demonstrate that a single bout of exercise inhibits high-fat diet-induced insulin resistance. Diet-induced obesity (DIO) increased the expression and activity of the protein tyrosine phosphatase 1B (PTP1B) and attenuated insulin signalling in gastrocnemius muscle of rats, a phenomenon which was reversed by a single session of exercise. In addition, DIO was observed to lead to serine phosphorylation of insulin receptor substrate 1 (IRS-1), which was also reversed by exercise in muscle in parallel with a reduction in c-Jun N-terminal kinase (JNK) activity. Thus, acute exercise increased the insulin sensitivity during high-fat feeding in obese rats. Overall, these results provide new insights into the mechanism by which exercise restores insulin sensitivity.


Assuntos
Gorduras na Dieta/administração & dosagem , Resistência à Insulina , Obesidade/fisiopatologia , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Condicionamento Físico Animal , Proteínas Tirosina Fosfatases/metabolismo , Animais , Relação Dose-Resposta a Droga , Proteínas I-kappa B/antagonistas & inibidores , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Serina/metabolismo , Transdução de Sinais , Natação
8.
FEBS Lett ; 580(19): 4625-31, 2006 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16876161

RESUMO

TNF-alpha acts on the hypothalamus modulating food intake and energy expenditure through mechanisms incompletely elucidated. Here, we explore the hypothesis that, to modulate insulin-induced anorexigenic signaling in hypothalamus, TNF-alpha requires the synthesis of NO. TNF-alpha activates signal transduction through JNK and p38 in hypothalamus, peaking at 10(-8) M. This is accompanied by the induction of expression of the inducible and neuronal forms of NOS, in both cases peaking at 10(-12) M. In addition, TNF-alpha stimulates NOS catalytic activity. Pre-treatment with TNF-alpha at a low dose (10(-12) M) inhibits insulin-dependent anorexigenic signaling, and this effect is abolished in iNOS but not in nNOS knockout mice.


Assuntos
Comportamento Alimentar/fisiologia , Hipotálamo/efeitos dos fármacos , Insulina/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Relação Dose-Resposta a Droga , Hipotálamo/fisiologia , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...