Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2794, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181693

RESUMO

Type II toxin-antitoxin (TA) systems are widespread in bacteria and are involved in important cell features, such as cell growth inhibition and antimicrobial tolerance, through the induction of persister cells. Overall, these characteristics are associated with bacterial survival under stress conditions and represent a significant genetic mechanism to be explored for antibacterial molecules. We verified that even though Xylella fastidiosa and Xanthomonas citri subsp. citri share closely related genomes, they have different Type II TA system contents. One important difference is the absence of mqsRA in X. citri. The toxin component of this TA system has been shown to inhibit the growth of X. fastidiosa. Thus, the absence of mqsRA in X. citri led us to explore the possibility of using the MqsR toxin to impair X. citri growth. We purified MqsR and confirmed that the toxin was able to inhibit X. citri. Subsequently, transgenic citrus plants producing MqsR showed a significant reduction in citrus canker and citrus variegated chlorosis symptoms caused, respectively, by X. citri and X. fastidiosa. This study demonstrates that the use of toxins from TA systems is a promising strategy to be explored aiming bacterial control.


Assuntos
Toxinas Bacterianas/genética , Citrus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/farmacologia , Biotecnologia , Citrus/genética , Proteínas de Escherichia coli/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , Virulência/genética , Xanthomonas/genética , Xanthomonas/patogenicidade , Xylella/genética , Xylella/patogenicidade
2.
Sci Rep ; 11(1): 15558, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330957

RESUMO

N-Acetylcysteine (NAC) is an antioxidant, anti-adhesive, and antimicrobial compound. Even though there is much information regarding the role of NAC as an antioxidant and anti-adhesive agent, little is known about its antimicrobial activity. In order to assess its mode of action in bacterial cells, we investigated the metabolic responses triggered by NAC at neutral pH. As a model organism, we chose the Gram-negative plant pathogen Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker disease, due to the potential use of NAC as a sustainable molecule against phytopathogens dissemination in citrus cultivated areas. In presence of NAC, cell proliferation was affected after 4 h, but damages to the cell membrane were observed only after 24 h. Targeted metabolite profiling analysis using GC-MS/TOF unravelled that NAC seems to be metabolized by the cells affecting cysteine metabolism. Intriguingly, glutamine, a marker for nitrogen status, was not detected among the cells treated with NAC. The absence of glutamine was followed by a decrease in the levels of the majority of the proteinogenic amino acids, suggesting that the reduced availability of amino acids affect protein synthesis and consequently cell proliferation.


Assuntos
Acetilcisteína/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Xanthomonas/metabolismo , Aminoácidos/metabolismo , Membrana Celular/metabolismo , Citrus/metabolismo , Glutamina/metabolismo
3.
Microorganisms ; 9(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072545

RESUMO

Xanthomonas citri subsp. citri (X. citri) is a plant pathogenic bacterium causing citrus canker disease. The xanA gene encodes a phosphoglucomutase/phosphomannomutase protein that is a key enzyme required for the synthesis of lipopolysaccharides and exopolysaccharides in Xanthomonads. In this work, firstly we isolated a xanA transposon mutant (xanA::Tn5) and analyzed its phenotypes as biofilm formation, xanthan gum production, and pathogenesis on the sweet orange host. Moreover, to confirm the xanA role in the impaired phenotypes we further produced a non-polar deletion mutant (ΔxanA) and performed the complementation of both xanA mutants. In addition, we analyzed the percentages of the xanthan gum monosaccharides produced by X. citri wild-type and xanA mutant. The mutant strain had higher ratios of mannose, galactose, and xylose and lower ratios of rhamnose, glucuronic acid, and glucose than the wild-type strain. Such changes in the saccharide composition led to the reduction of xanthan yield in the xanA deficient strain, affecting also other important features in X. citri, such as biofilm formation and sliding motility. Moreover, we showed that xanA::Tn5 caused no symptoms on host leaves after spraying, a method that mimetics the natural infection condition. These results suggest that xanA plays an important role in the epiphytical stage on the leaves that is essential for the successful interaction with the host, including adaptive advantage for bacterial X. citri survival and host invasion, which culminates in pathogenicity.

4.
J Bacteriol ; 201(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31358614

RESUMO

Xanthomonas citri subsp. citri causes citrus canker disease worldwide in most commercial varieties of citrus. Its transmission occurs mainly by wind-driven rain. Once X. citri reaches a leaf, it can epiphytically survive by forming a biofilm, which enhances the persistence of the bacteria under different environmental stresses and plays an important role in the early stages of host infection. Therefore, the study of genes involved in biofilm formation has been an important step toward understanding the bacterial strategy for survival in and infection of host plants. In this work, we show that the ecnAB toxin-antitoxin (TA) system, which was previously identified only in human bacterial pathogens, is conserved in many Xanthomonas spp. We further show that in X. citri, ecnA is involved in important processes, such as biofilm formation, exopolysaccharide (EPS) production, and motility. In addition, we show that ecnA plays a role in X. citri survival and virulence in host plants. Thus, this mechanism represents an important bacterial strategy for survival under stress conditions.IMPORTANCE Very little is known about TA systems in phytopathogenic bacteria. ecnAB, in particular, has only been studied in bacterial human pathogens. Here, we showed that it is present in a wide range of Xanthomonas sp. phytopathogens; moreover, this is the first work to investigate the functional role of this TA system in Xanthomonas citri biology, suggesting an important new role in adaptation and survival with implications for bacterial pathogenicity.


Assuntos
Antitoxinas/genética , Citrus/microbiologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Biofilmes/crescimento & desenvolvimento , Humanos , Viabilidade Microbiana , Doenças das Plantas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum , Virulência , Xanthomonas/metabolismo , Xanthomonas/fisiologia
5.
PLoS One ; 13(9): e0203451, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30192822

RESUMO

Antimicrobial peptides (AMPs) can be found in various organisms, and could be considered an alternative for pesticides used to control plant pathogens, including those affecting citrus. Brazil is the largest producer and exporter of frozen concentrated orange juice in the world. However, the citrus industry has been affected by several diseases such as citrus canker and huanglongbing (HLB), caused by the bacteria Xanthomonas citri subsp. citri (X.citri) and Candidatus Liberibacter asiaticus (CaLas), respectively. In order to control these pathogens, putative AMPs were prospected in databases containing citrus sequences. Furthermore, AMPs already reported in the literature were also used for in vitro and in vivo assays against X.citri. Since CaLas cannot be cultivated in vitro, surrogates as Sinorhizobium meliloti and Agrobacterium tumefaciens were used. This study reports the evaluation of six AMPs obtained from different sources, two of them from Citrus spp. (citrus-amp1 and citrus-amp2), three from amphibians (Hylin-a1, K0-W6-Hy-a1 and Ocellatin 4-analogue) and one from porcine (Tritrpticin). Peptides K0-W6-Hy-a1, Ocellatin 4-analogue, and citrus-amp1 showed bactericidal activity against X.citri and S. meliloti and bacteriostatic effect on A. tumefaciens. These results were confirmed for X.citri in planta. In addition cytotoxicity evaluations of these molecules were performed. The AMPs that showed the lowest hemolytic activities were Triptrpticin, citrus-amp1 and citrus-amp2. Citrus-amp1 and citrus-amp2 not presented toxicity in experiments using in vivo model, G. mellonella and U87 MG cells. To verify the interaction of these AMPs with bacteria and erythrocyte cell membranes, vesicles mimicking these cells were built. Citrus-amp1 and Tritrpticin exhibited higher affinity to bacterial membranes, while Ocellatin 4-analogue and Hylin-a1 showed higher affinity to erythrocyte membranes; exclude their use in citrus. This work demonstrates an essential alternative, trough AMPs obtained from Citrus spp., which can be feasibly used to control bacterial pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Citrus/microbiologia , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Sequência de Aminoácidos , Anfíbios/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citrus/metabolismo , Humanos , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Peptídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Suínos , Xanthomonas/efeitos dos fármacos , Xanthomonas/fisiologia
6.
BMC Microbiol ; 16: 55, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005008

RESUMO

BACKGROUND: RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied. In this study, we characterize the ATP-dependent RNA helicase encoded by the hrpB (XAC0293) gene using deletion and genetic complementation assays. We provide insights into the function of the hrpB gene in Xanthomonas citri subsp. citri by investigating the roles of hrpB in biofilm formation on abiotic surfaces and host leaves, cell motility, host virulence of the citrus canker bacterium and growth in planta. RESULTS: The hrpB gene is highly conserved in the sequenced strains of Xanthomonas. Mutation of the hrpB gene (∆hrpB) resulted in a significant reduction in biofilms on abiotic surfaces and host leaves. ∆hrpB also exhibited increased cell dispersion on solid medium plates. ∆hrpB showed reduced adhesion on biotic and abiotic surfaces and delayed development in disease symptoms when sprayed on susceptible citrus leaves. Quantitative reverse transcription-PCR assays indicated that deletion of hrpB reduced the expression of four type IV pili genes. The transcriptional start site of fimA (XAC3241) was determined using rapid amplification of 5'-cDNA Ends (5'RACE). Based on the results of fimA mRNA structure predictions, the fimA 5' UTR may contain three different loops. HrpB may be involved in alterations to the structure of fimA mRNA that promote the stability of fimA RNA. CONCLUSIONS: Our data show that hrpB is involved in adherence of Xanthomonas citri subsp. citri to different surfaces. In addition, to the best of our knowledge, this is the first time that a DEAH RNA helicase has been implicated in the regulation of type IV pili in Xanthomonas.


Assuntos
Biofilmes/crescimento & desenvolvimento , RNA Helicases/genética , RNA Helicases/metabolismo , Xanthomonas/fisiologia , Xanthomonas/patogenicidade , Regiões 5' não Traduzidas , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Fímbrias Bacterianas/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Virulência , Xanthomonas/enzimologia
7.
Electron. j. biotechnol ; 15(3): 4-4, May 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640548

RESUMO

Xylella fastidiosa inhabits the plant xylem, a nutrient-poor environment, so that mechanisms to sense and respond to adverse environmental conditions are extremely important for bacterial survival in the plant host. Although the complete genome sequences of different Xylella strains have been determined, little is known about stress responses and gene regulation in these organisms. In this work, a DNA microarray was constructed containing 2,600 ORFs identified in the genome sequencing project of Xylella fastidiosa 9a5c strain, and used to check global gene expression differences in the bacteria when it is infecting a symptomatic and a tolerant citrus tree. Different patterns of expression were found in each variety, suggesting that bacteria are responding differentially according to each plant xylem environment. The global gene expression profile was determined and several genes related to bacterial survival in stressed conditions were found to be differentially expressed between varieties, suggesting the involvement of different strategies for adaptation to the environment. The expression pattern of some genes related to the heat shock response, toxin and detoxification processes, adaptation to atypical conditions, repair systems as well as some regulatory genes are discussed in this paper. DNA microarray proved to be a powerful technique for global transcriptome analyses. This is one of the first studies of Xylella fastidiosa gene expression in vivo which helped to increase insight into stress responses and possible bacterial survival mechanisms in the nutrient-poor environment of xylem vessels.


Assuntos
Citrus/microbiologia , Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Xylella/crescimento & desenvolvimento , Xylella/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Can J Microbiol ; 57(2): 149-54, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21326357

RESUMO

The twin-arginine translocation (Tat) pathway of the xylem-limited phytopathogenic bacterium Xylella fastidiosa strain 9a5c, responsible for citrus variegated chlorosis, was explored. The presence of tatA, tatB, and tatC in the X. fastidiosa genome together with a list of proteins harboring 2 consecutive arginines in their signal peptides suggested the presence of a Tat pathway. The functional Tat dependence of X. fastidiosa OpgD was examined. Native or mutated signal peptides were fused to the ß-lactamase. Expression of fusion with intact signal peptides mediated high resistance to ampicillin in Escherichia coli tat+ but not in the E. coli tat null mutant. The replacement of the 2 arginines by 2 lysines prevented the export of ß-lactamase in E. coli tat+, demonstrating that X. fastidiosa OpgD carries a signal peptide capable of engaging the E. coli Tat machinery. RT-PCR analysis revealed that the tat genes are transcribed as a single operon. tatA, tatB, and tatC genes were cloned. Complementation assays in E. coli devoid of all Tat or TatC components were unsuccessful, whereas X. fastidiosa Tat components led to a functional Tat translocase in E. coli TatB-deficient strain. Additional experiments implicated that X. fastidiosa TatB component could form a functional heterologous complex with the E. coli TatC component.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Óperon , Xylella/genética , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Mutação , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Xylella/metabolismo , beta-Lactamases/metabolismo
9.
Res Microbiol ; 157(3): 254-62, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16125907

RESUMO

The genome of the bacterium Xylella fastidiosa contains four ORFs (XF2721, XF2725, XF2739 and XF0295) related to the restriction modification type I system, ordinarily named R-M. This system belongs to the DNA immigration control region (ICR). Each ORF is related to different operon structures, which are homologues among themselves and with subunit Hsd R from the endonuclease coding genes. In addition, these ORFs are highly homologous to genes in Pseudomonas aeruginosa, Methylococcus capsulatus str. Bath, Legionella pneumophila, Helicobacter pylori, Xanthomonas oryzae pv. Oryzae and Silicibacter pomeroyi, as well as to genes from X. fastidiosa strains that infect grapevine, almond and oleander plants. This study was carried out on R-M ORFs from forty-three X. fastidiosa strains isolated from citrus, coffee, grapevine, periwinkle, almond and plum trees, in order to assess the genetic diversity of these loci through PCR-RFLP. PCR-RFLP analysis of the four ORFs related to the R-M system from these strains enabled the detection of haplotypes for these loci. When the haplotypes were defined, wide genetic diversity and a large range of similar strains originating from different hosts were observed. This analysis also provided information indicating differences in population genetic structures, which led to detection of different levels of gene transfer among the groups of strains.


Assuntos
DNA Bacteriano/genética , Variação Genética , Xylella/genética , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Proteínas de Escherichia coli/genética , Fases de Leitura Aberta , Óperon , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...