Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(21): e202303508, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38369596

RESUMO

Mastering graphene preparation is an essential step to its integration into practical applications. For large-scale purposes, full graphite exfoliation appears as a suitable route for graphene production. However, it requires overpowering attractive van der Waals forces demanding large energy input, with the risk of introducing defects in the material. This difficulty can be overcome by using graphite intercalation compounds (GICs) as starting material. The greater inter-sheet separation in GICs (compared with graphite) allows the gentler exfoliation of soluble graphenide (reduced graphene) flakes. A solvent exchange strategy, accompanied by the oxidation of graphenide to graphene, can be implemented to produce stable aqueous graphene dispersions (Eau de graphene, EdG), which can be readily incorporated into many processes or materials. In this work, we prove that electrostatic forces are responsible for the stability of fully exfoliated graphene in water, and explore the influence of the oxidation and solvent exchange procedures on the quality and stability of EdG. We show that the amount of defects in graphene is limited if graphenide oxidation is carried out before exposing the material to water, and that gas removal of water before the incorporation of pre-oxidized graphene is advantageous for the long-term stability of EdG.

2.
Angew Chem Int Ed Engl ; 62(20): e202303060, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37021794

RESUMO

External diffusion may be exploited as a tool to purify materials in a way thought to be inaccessible from a chemical reactivity point of view. A mixture of two carbonaceous materials, graphite and carbon black, are thermally oxidized in either i) outside total diffusion-limited regime or ii) total diffusion-limited regime. Depending on the treatment applied it is possible to purify either graphite, a trivial task, or carbon black, a task thought impossible. Introducing geometrical selectivity, controlled total diffusion-limited chemistry exceeds by far the field of carbon materials and can be used as an engineering tool for many materials purification, original synthesis, or to introduce asymmetry in a system. Several examples for direct applications of the findings are mentioned.

3.
Chemistry ; 28(54): e202200117, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35638155

RESUMO

Combustion is arguably as old as homo sapiens ability to observe and use fire. Despite the long tradition of using carbon combustion for energy production, this reaction is still not fully understood. This can be related to several facts that are intertwined and complicate the investigation, such as the large variety of possible carbon structures, the actual surface structure, porosity, the solid-gas nature of this reaction, diffusion limitation and fundamental reaction steps. In this review, a brief history of carbon combustion science is given, followed by a detailed discussion of the most important aspects of carbon combustion. Special attention is given to limitations for example diffusion. In carbon combustion, kinetic control can rarely be observed. The literature of the fundamental reaction steps actually occurring on the carbon framework is reviewed and it becomes apparent that the reaction is occurring primarily on defects on the basal plane. Thus, the reaction between oxygen and carbon may be used as an analytical tool to provide further insights into novel materials, for example synthetic carbon materials, fibres and graphene type materials. Mastering the combustion reaction in all its complexity may prove to be very valuable in the future.

4.
ACS Appl Mater Interfaces ; 14(11): 13305-13316, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258941

RESUMO

Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5-SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol-gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel-Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h-1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h-1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.

5.
ACS Nano ; 15(1): 596-603, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444504

RESUMO

Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

6.
Angew Chem Int Ed Engl ; 58(45): 16013-16017, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31269289

RESUMO

Kinetic data, for example, activation energy and reaction order, are crucial for the understanding of chemical reactions and processes. Here, we describe a novel method for obtaining kinetic data based on thermogravimetric measurements (TGA) that exploits in each measurement multiple successive isothermal steps (SIS). We applied this method to the notoriously challenging carbon combustion process for vastly different carbons for oxygen molar fractions between 1.4 % and 90 %. Our obtained apparent EA values are within the wide range of results in the literature and vary in a systematic way with the oxygen partial pressure. The improved accuracy and large amount of obtainable data allowed us to show that the majority of experimentally obtained apparent data for apparent EA are neither in a kinetic regime nor in a diffusion-controlled one but rather in a transition regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...