Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nanomedicine (Lond) ; 18(6): 541-554, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37165970

RESUMO

Aims: Develop and analyze triple-negative breast cancer targeted nanoparticles loaded with the demethylating agent decitabine. Materials & methods: The polymers were synthesized by ring-opening polymerization of D,L-lactide and formulated into nanoparticles via emulsion-evaporation method. The nanoparticles were characterized by physicochemical analysis as well as in vitro using breast cancer cell lineages. Results & conclusion: The targeted nanoparticles exhibited a hydrodynamic diameter of 75 ± 12 nm, zeta potential -6.3 ± 0.2 mV and spherical morphology, and displayed greater in vitro accumulation into MDA-MB-231 (triple-negative breast cancer cell-line) compared with MCF7 and HB4A cell lineages as verified by fluorescence confocal microscopy and significant demethylating effects via ADAM33 screening by PCR.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Epigênese Genética , Ligantes , Linhagem Celular Tumoral , Nanopartículas/química , Proteínas ADAM
2.
Heliyon ; 9(4): e15500, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37089325

RESUMO

Around 10-15% of COVID-19 patients affected by the Delta and the Omicron variants exhibit acute respiratory insufficiency and require intensive care unit admission to receive advanced respiratory support. However, the current ventilation methods display several limitations, including lung injury, dysphagia, respiratory muscle atrophy, and hemorrhage. Furthermore, most of the ventilatory techniques currently offered require highly trained professionals and oxygen cylinders, which may attain short supply owing to the high demand and misuse. Therefore, the search for new alternatives for oxygen therapeutics has become extremely important for maintaining gas exchange in patients affected by COVID-19. This review highlights and suggest new alternatives based on micro and nanostructures capable of supplying oxygen and/or enabling hematosis during moderate or acute COVID-19 cases.

3.
Epigenomics ; 15(24): 1309-1322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38174426

RESUMO

Background: Dulaglutide emerged as a promising therapeutic option for diabetes mellitus Type 2 (DM2). Aims: Owing to epigenetic similarities between the pathophysiology of DM2 and breast cancer (BC), we investigated the antitumor effect of dulaglutide. Materials & methods: To investigate the effect of dulaglutide, we analyzed the expression of methylated gene promoter regions in BC (ESR1, CDH1 and ADAM33). Results: Dulaglutide increased the expression of ESR1, CDH1 and ADAM33 up to fourfold in the MDA-MB-231 lineage by demethylating the gene promoter regions. This effect was translated to in vivo antitumoral activity and revealed significant tumor inhibition by combining the half-dose of methotrexate with dulaglutide. Conclusion: This therapy may mitigate the severe side effects commonly associated with chemotherapy.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Hipoglicemiantes/uso terapêutico , Proteínas ADAM/uso terapêutico
4.
Nanomedicine (Lond) ; 17(9): 645-664, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438008

RESUMO

Ligand-mediated targeting represents the cutting edge in precision-guided therapy for several diseases. Surface engineering of nanomedicines with ligands exhibiting selective or tailored affinity for overexpressed biomolecules of a specific disease may increase therapeutic efficiency and reduce side effects and recurrence. This review focuses on newly developed approaches and strategies to improve treatment and overcome the mechanisms associated with breast cancer resistance.


Assuntos
Neoplasias da Mama , Nanomedicina , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Ligantes
5.
J Clin Ultrasound ; 50(3): 326-338, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35218034

RESUMO

COVID-19 is a dynamic disease and may affect different tissues and organs as it progresses. Therefore, the impact generated by the disease in all its stages and organs requires a functional and versatile imaging technique able to detect particularities or artifacts dynamically. Ultrasonography fulfills all these requirements and exhibit several advantages relative to other imaging modalities, including portability, lower cost and biosafety. Throughout the COVID-19 pandemic, ultrasonography displayed a crucial role in the triage, monitoring, indicating organ damages and enabling individualized therapeutical decisions in COVID-19 patients. This review is dedicated to highlight the main pathological effects correlated with ultrasound changes caused by COVID-19 in the lungs, heart and liver.


Assuntos
COVID-19 , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pandemias , SARS-CoV-2 , Ultrassonografia
6.
Int J Biol Macromol ; 194: 172-178, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863828

RESUMO

This study aimed to evaluate the influence of formulation and procedure parameters in obtaining thick and continuous chitosan/PVA/glycerol nanofibres to be applied in skin care. For that, the polymers were characterized by nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and size-exclusion chromatography. After this, 96 chitosan/PVA/glycerol nanofibre scaffolds were prepared by electrospinning method, using factorial designs. The independent variables were crude and pure chitosan, 2 brands of PVA, 2 needle gauges, high and low polymer concentration, high and low glycerol concentration, and final solution with and without ultrafiltration. Morphological analysis was performed by scanning electron microscopy, atomic force microscopy, and confocal microscopy. The best sample (NF67) presented an average thickness of 268.3 nm, uniform distribution, and high yield. It was obtained at a 1:3.5 (crude chitosan: PVA with lower molecular weight, but more hydrolysed) ratio and lower glycerol concentration, suggesting that the degree of hydrolysis of the PVA is more important than its molecular weight for obtaining better quality nanofibres and that the glycerol also makes the electrospinning process difficult. Thus, it was possible to choose parameters that provide scaffolds that could be applied as a matrix extracellular-like material in wound healing.


Assuntos
Quitosana/química , Glicerol/química , Nanofibras/química , Nanofibras/ultraestrutura , Álcool de Polivinil/química , Higiene da Pele , Fenômenos Químicos , Quitosana/isolamento & purificação , Microscopia de Força Atômica , Nanotecnologia , Medicina Regenerativa , Análise Espectral , Nanomedicina Teranóstica
7.
Chem Biol Interact ; 349: 109641, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534549

RESUMO

Breast cancer (BC) is the most frequently diagnosed female cancer and second leading cause of death. Despite the discovery of many antineoplastic drugs for BC, the current therapy is not totally efficient. In this study, we investigated the potential of repurposing the well-known diabetes type II drug liraglutide to modulate epigenetic modifications in BC cells lines in vitro and in vivo via Ehrlich mice tumors models. The in vitro results revealed a significant reduction on cell viability, migration, DNMT activity and displayed lower levels of global DNA methylation in BC cell lines after liraglutide treatment. The interaction between liraglutide and the DNMT enzymes resulted in a decrease profile of DNA methylation for the CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increased their gene and protein expression levels. To elucidate the possible interaction between liraglutide and the DNMT1 protein, we performed an in silico study that indicates liraglutide binding in the catalytic cleft via hydrogen bonds and salt bridges with the interdomain contacts and disturbs the overall enzyme conformation. The in vivo study was also able to reveal that liraglutide and the combined treatment of liraglutide and paclitaxel or methotrexate were effective in reducing tumor growth. Moreover, the modulation of CDH1 and ADAM33 mouse gene expression by DNA demethylation suggests a role for liraglutide in DNMT activity in vivo. Altogether, these results indicate that liraglutide may be further analysed as a new adjuvant treatment for BC.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Liraglutida/uso terapêutico , Proteínas ADAM/genética , Animais , Antígenos CD/genética , Neoplasias da Mama/patologia , Caderinas/genética , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Camundongos , Regiões Promotoras Genéticas
8.
Rev. bras. anal. clin ; 52(4): 337-345, 20201230. tab, ilus
Artigo em Português | LILACS | ID: biblio-1223688

RESUMO

Em humanos, o pH sanguíneo é mantido em uma faixa estreita, entre 7,35 e 7,45. Diferentes mecanismos bioquímicos, de forma harmônica, atuam para a manutenção do pH fisiológico. Múltiplos processos patológicos podem promover alterações no pH e nos gases sanguíneos, caracterizando acidose (pH <7,35) ou alcalose (pH >7,45). A ruptura da homeostasia do pH é identificada pela medição do pH, pressão parcial de dióxido de carbono (pCO2), concentração do bicarbonato (HCO3-) e, adicionalmente, com a pressão de oxigênio (pO2) em sangue arterial, processo descrito como gasometria arterial. Este artigo revisa os principais elementos associados a compreensão das alterações e tem como objetivo central apresentar uma abordagem didática e intuitiva para a caracterização destes distúrbios; e também comenta sobre ferramentais digitais destinadas a interpretações das alterações da gasometria arterial que também são abordados, como programas para computadores em ambiente web e aplicativos para telefonia móvel.


In humans, blood pH is kept in a narrow range, between 7.35 to 7.45. Different biochemical mechanisms, in a harmonic way, act to maintain the physiological pH. Multiple pathological processes can promote changes in pH and blood gases, characterizing acidosis (pH <7.35) or alkalosis (pH> 7.45). The rupture of pH homeostasis is identified by measuring pH, partial pressure of carbon dioxide (pCO2), bicarbonate concentration (HCO3 - and, in addition, with the pressure of oxygen (pO2) in arterial blood, a process described as gasometry arterial. This article reviews the main elements associated with the understanding of acid-base changes and aims to present a didactic and intuitive approach to the characterization of these disorders; and also comments on digital tools for the interpretation of alterations in arterial blood gases are also covered, such as programs for computers in a web environment and applications for mobile phone.


Assuntos
Valores de Referência , Desequilíbrio Ácido-Base , Gasometria , Software , Aplicativos Móveis
9.
J Colloid Interface Sci ; 576: 457-467, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470853

RESUMO

HYPOTHESIS: Nitric oxide (NO)-releasing Pluronic F127 hydrogels (F127) containing dissolved S-nitrosothiols or pendant N-diazeniumdiolate (NONOate) groups have been described. The NO charging of these hydrogels is usually limited by their low stability or disruption of the micellar packing. S-nitrosothiol-terminated F127 may emerge as a new strategy for allowing NO delivery at different rates in biomedical applications. EXPERIMENTS: Terminal hydroxyl groups of F127 were esterified and reduced to produce F127-mercaptopropionate (HS-F127-SH), which was subsequently S-nitrosated to generate S-nitrosothiol-terminated F127 (ONS-F127-SNO). Micro-differential scanning calorimetry, 1H NMR spin-spin relaxation (T2), temperature-dependent small-angle X-ray scattering, and cryo-transmission electron microscopy, were used to determine the micellar packing structure, while real-time chemiluminescence NO detection and UV-Vis spectrophotometry were used to evaluate the kinetics of NO release. FINDINGS: HS-F127-SH micellization and gelation processes were analogous to native F127, however, with a decreased short-range ordering of the micelles. ONS-F127-SNO hydrogels released NO thorough a preferentially intramicellar SNO dimerization reaction. Increasing ONS-F127-SNO concentration reduces the rate of SNO dimerization and increases the overall rate of NO release to the gas phase, opening up new possibilities for tailoring NO delivery from F127-based hydrogels.

10.
J Tissue Eng Regen Med ; 14(6): 807-818, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32330363

RESUMO

Mounting evidence showing that local nitric oxide (NO) delivery may significantly improve the wound healing process has stimulated the development of wound dressings capable of releasing NO topically. Herein, we describe the preparation of a self-expandable NO-releasing hydrolyzed collagen sponge (CS), charged with the endogenously found NO donor, S-nitrosoglutathione (GSNO). We show that cold pressed and GSNO-charged CS (CS/GSNO) undergo self-expansion to its original 3D shape upon water absorption to a swelling degree of 2,300 wt%, triggering the release of free NO. Topical application of compressed CS/GSNO on wounds in an animal model showed that exudate absorption by CS/GSNO leads to the release of higher NO doses during the inflammatory phase and progressively lower NO doses at later stages of the healing process. Moreover, treated animals showed significant increase in the mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1), murine macrophage marker (F4/80), transforming growth factor beta (TGF-ß), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor-1 (IGF-1), nitric oxide synthase(iNOS), and matrix metalloproteinase(MMP-9). Cluster differentiation 31 (CD31), vascular endothelial growth factor (VEGF), and F4/80 were measured on Days 7 and 12 by immunohistochemistry in the cicatricial tissue. These results indicate that the topical delivery of NO enhances the migration and infiltration of leucocytes, macrophages, and keratinocytes to the wounded tissue, as well as the neovascularization and collagen deposition, which are correlated with an accelerated wound closure. Thus, self-expandable CS/GSNO may represent a novel biocompatible and active wound dress for the topical delivery of NO on wounds.


Assuntos
Colágeno , Óxido Nítrico , S-Nitrosoglutationa , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Animais , Colágeno/química , Colágeno/farmacologia , Modelos Animais de Doenças , Implantes de Medicamento/química , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Masculino , Camundongos , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , S-Nitrosoglutationa/química , S-Nitrosoglutationa/farmacocinética , S-Nitrosoglutationa/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
11.
Nitric Oxide ; 98: 41-49, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147583

RESUMO

Polymeric biomaterials capable of delivering nitric oxide (NO) topically can be used to enhance skin blood flow (SkBF) and accelerate wound healing. Herein, we used reversible addition-fragmentation chain transfer radical (RAFT) polymerization to synthesize the first poly(vinyl alcohol) (PVA) functionalized with terminal NO-releasing S-nitrosothiol (RSNO) groups for topical NO delivery. This strategy was based on the synthesis of a precursor amino-terminated PVA (PVA-NH2), which was next functionalized with iminothiolane yielding 4-imino-4-amino-PVA-butane-1-thiol (PVA-SH), and finally S-nitrosated yielding S-nitroso 4-imino-4-amino-PVA-butane-1-thiol (PVA-SNO). Real-time chemiluminescence NO detection showed that blended films of pure PVA with PVA-SNO with mass ratios 30:70, 50:50 and 70:30 release NO with initial rates ranging from 1 to 12 nmol g-1 min-1, and lead to a 2 to 10-fold dose-response increase in the SkBF, after topical application on the ventral forearm of volunteers. These results show that PVA-SNO is a potential platform for topical NO delivery in biomedical applications.


Assuntos
Óxido Nítrico/metabolismo , Álcool de Polivinil/metabolismo , S-Nitrosoglutationa/metabolismo , Pele/metabolismo , Velocidade do Fluxo Sanguíneo , Humanos , Pele/irrigação sanguínea
12.
Int J Biol Macromol ; 130: 622-626, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831162

RESUMO

The mechanical pretreatments intensities on characteristics of cellulose nanocrystals (CNC) prior to acid hydrolysis was evaluated. The cellulose was submitted to mechanical pretreatment as: magnetic stirring (CNCst), blending (CNCbl) or grinding by 20 (CNC20x) and 40 (CNC40x) passages in a super mass colloid mill. Then, all samples were submitted to H2SO4 hydrolysis and the CNC were evaluated by total mass yield (TMY%), rheological behavior, size distribution for width/length (WD), crystallinity index (CI%), OSO3- substitution degree (SD) and zeta potential (ζ). After hydrolysis samples exhibited the same SD (190 ±â€¯5 mMol·kg-1), ζ (-55 ±â€¯3 mV) and CI% (65 ±â€¯2), differing only in TMY% and WD. The CNCst showed TMY% of 85%, WD of 8 ±â€¯5 nm and 100-800 nm, with presence of cellulose nanofibers (CNF), suggesting incomplete hydrolysis. The CNCbl and CNC20x revealed TMY% of 65 ±â€¯1, but differed in WD of 8 ±â€¯5 nm and 300 ±â€¯200 nm and 8 ±â€¯5 nm and 200 ±â€¯170 nm, respectively. The results showed that the grinding mechanical pretreatment is mandatory for CNF isolation, but not for CNC. Stability profile after the hydrolytic procedure, CI%, morphology and similar character generated CNC with adequate features and good yield, by simple mechanical stirring or blending, reducing the production's cost and allowing industrial-scale production.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Nanopartículas/química , Ácidos Sulfúricos/química , Celulose/análise , Fracionamento Químico/métodos , Hidrólise , Microscopia de Força Atômica , Nanopartículas/análise , Análise Espectral , Viscosidade
13.
J Colloid Interface Sci ; 544: 217-229, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30849619

RESUMO

Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (F127) hydrogels have been used to deliver nitric oxide (NO) topically in biomedical applications. Here, the effect of F127 microenvironments on the photochemical NO release from S-nitrosoglutathione (GSNO) was investigated in F127 solutions 7.6 wt% 15 wt% and 22.5 wt% at 15 °C and 37 °C. Small-angle X-ray Scattering (SAXS) and Differential Scanning Calorimetry (DSC) measurements, along with proton Nuclear Magnetic Resonance (1H NMR) spectral shifts and T2 relaxation data at six different concentration-temperature conditions, allowed identifying F127 microphases characterized by: a sol phase of unimers; micelles in non-defined periodic order, and a gel phase of cubic packed micelles. Kinetic measurements showed that GSNO photodecompositon proceeds faster in micellized F127 where GSNO is segregated to the intermicellar microenvironment. Real time kinetic monitoring of NO release and T2 relaxation profiles showed that NO is preferentially partitioned into the hydrophobic PPO cores of the F127 micelles, with the consequent decrease in its rate of release to the gas phase. These results show that F127 microphases affect both the kinetics of GSNO photodecomposition and the rate of NO escape and can be used to modulate the photochemical NO delivery from F127/GSNO solutions.


Assuntos
Hidrogéis/química , Óxido Nítrico/química , Poloxâmero/química , Polietilenoglicóis/química , Polímeros/química , Propilenoglicóis/química , S-Nitrosoglutationa/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Cinética , Micelas , Processos Fotoquímicos , Temperatura
14.
Nitric Oxide ; 84: 30-37, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630056

RESUMO

Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ±â€¯14 and 90 ±â€¯6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.


Assuntos
Acetilcisteína/análogos & derivados , S-Nitrosoglutationa/química , Acetilcisteína/síntese química , Acetilcisteína/química , Concentração de Íons de Hidrogênio , Cinética , Luz , S-Nitrosoglutationa/síntese química , Temperatura
15.
J Pharm Sci ; 108(2): 860-869, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30222977

RESUMO

Perillyl alcohol is a natural compound that has attracted a significant interest due to its potent antitumor activity. However, clinical trials have exhibited poor tolerance by oral administration, mainly due to gastrointestinal side effects. We propose the entrapment of perillyl alcohol into poly(D,L-lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG) as delivery platform (entrapment efficiency of 63%-68%). The influence of different concentrations of the tensoactives poly(vinyl alcohol) and sodium cholate (SC) on shear strength and morphology was evaluated by confocal laser scanning microscopy and interfacial tension studies. Only the microcapsules formulated with SC maintained their sphericity when submitted to shear stress. These results indicate that the interface is better organized with SC, conferring mutual stacked packing that is able to better stabilize the organic drop. The in vitro release profile of the drug from the microcapsules was correlated with pore formation and polymer degradation, best fitted to the Baker-Lonsdale model. The loaded microcapsules showed an IC50 equivalent to that of the free drug (80 µg/mL) after 72 h of exposure. However, after 24 h of exposure, loaded microcapsules showed an IC50 almost two-fold higher (220 µg/mL) suggesting gradual release.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Lactatos/química , Monoterpenos/administração & dosagem , Polietilenoglicóis/química , Antineoplásicos/química , Cápsulas , Liberação Controlada de Fármacos , Cinética , Monoterpenos/química , Álcool de Polivinil/química , Colato de Sódio/química
16.
Biomacromolecules ; 19(8): 3244-3256, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29995383

RESUMO

Imaging the enhanced permeation and retention effect by ultrasound is hindered by the large size of commercial ultrasound contrast agents (UCAs). To obtain nanosized UCAs, triblock copolymers of poly(ethylene glycol)-polylactide-poly(1 H,1 H,2 H,2 H-heptadecafluorodecyl methacrylate) (PEG-PLA-PFMA) with distinct numbers of perfluorinated pendant chains (5, 10, or 20) are synthesized by a combination of ring-opening polymerization and atom transfer radical polymerization. Nanocapsules (NCs) containing perfluorooctyl bromide (PFOB) intended as UCAs are obtained with a 2-fold increase in PFOB encapsulation efficiency in fluorinated NCs as compared with plain PEG-PLA NCs thanks to fluorous interactions. NC morphology is strongly influenced by the number of perfluorinated chains and the amount of polymer used for formulation, leading to peculiar capsules with several PFOB cores at high PEG-PLA-PFMA20 amount and single-cored NCs with a thinner shell at low fluorinated polymer amount, as confirmed by small-angle neutron scattering. Finally, fluorinated NCs yield higher in vitro ultrasound signal compared with PEG-PLA NCs, and no in vitro cytotoxicity is induced by fluorinated polymers and their degradation products. Our results highlight the benefit of adding comb-like fluorinated blocks in PEG-PLA polymers to modify the nanostructure and enhance the echogenicity of nanocapsules intended as UCAs.


Assuntos
Meios de Contraste/química , Compostos de Flúor/química , Nanocápsulas/química , Ultrassonografia/métodos , Acrilatos/química , Animais , Linhagem Celular , Meios de Contraste/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Polietilenoglicóis/química
17.
Talanta ; 187: 165-171, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853030

RESUMO

The biotechnological evolution towards the development of antigens to detect leprosy has been progressing. However, the identification of leprosy in paucibacillary patients, based solely on the antigen-antibody interaction still remains a challenge. The complexity of clinical manifestations requires innovative approaches to improve the sensitivity of assays to detect leprosy before the onset of symptoms, thus avoiding disabilities and contributing, indirectly, to reduce transmission. In this study, the strategies employed for early leprosy diagnosis were: i. using a phage-displayed mimotope (APDDPAWQNIFNLRR) which mimics an immunodominant sequence (PPNDPAWQRNDPILQ) of an antigen of Mycobacterium leprae known as Ag85B; ii. engineering the mimotope by adding a C-terminal flexible spacer (SGSG-C); iii. conjugating the mimotope to a carrier protein to provide better exposure to antibodies; iv. amplifying the signal using biotin-streptavidin detection system in an ELISA; and v. coating the optimized mimotope on a quartz crystal microbalance (QCM) sensor for label-free biosensing. The ELISA sensitivity increased up to 91.7% irrespective of the immunological profile of the 132 patients assayed. By using comparative modeling, the M. tuberculosis Ag85B was employed as a template to ascertain which features make the mimotope a good antigen in terms of its specificity. For the first time, a sensitive QCM-based immunosensor to detect anti M. leprae antibodies in human serum was used. M. leprae antibodies could also be detected in the sera of paucibacillary patients; thus, the use of a mimotope-derived synthetic peptide as bait for antibodies in a novel analytical label-free immunoassay for leprosy diagnosis exhibits great potential.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Hanseníase/diagnóstico , Mycobacterium leprae/isolamento & purificação , Técnicas de Microbalança de Cristal de Quartzo , Adulto , Animais , Biomarcadores/análise , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
18.
Acta Biomater ; 74: 312-325, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29777958

RESUMO

Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 µmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE: The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-ß, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.


Assuntos
Resinas Acrílicas , Hidrogéis , Óxido Nítrico , Polietilenos , Polipropilenos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Citocinas/biossíntese , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacocinética , Hidrogéis/farmacologia , Camundongos , Micelas , Óxido Nítrico/química , Óxido Nítrico/farmacocinética , Óxido Nítrico/farmacologia , Polietilenos/química , Polietilenos/farmacocinética , Polietilenos/farmacologia , Polipropilenos/química , Polipropilenos/farmacocinética , Polipropilenos/farmacologia , S-Nitrosoglutationa/química , S-Nitrosoglutationa/farmacocinética , S-Nitrosoglutationa/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
19.
Carbohydr Polym ; 185: 63-72, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421061

RESUMO

To propose a novel modeling of aflatoxin immunization and surrogate toxin conjugate from AFB1 vaccines, an immunogen based on the mimotope, (i.e. a peptide-displayed phage that mimics aflatoxins epitope without toxin hazards) was designed. The recombinant phage 3P30 was identified by phage display technology and exhibited the ability to bind, dose dependent, specifically to its cognate target - anti-AFB1 antibody. In immunization assay, the phage-displayed mimotope and its peptide chemically synthesized were able to induce specific anti-AFB1 antibodies, indicating the proof of concept for aflatoxin mimicry. Furthermore, the phage 3P30 was homogeneously coated with chitosan, which also provided a tridimensional matrix network for mucosal delivery. After intranasal immunization, chitosan coated phages improved specific immunogenicity compared to the free antigen. It can be concluded that affinity-selected phage may contribute to the rational design of epitope-based vaccines in a prospectus for the control of aflatoxins and possibly other mycotoxins, and that chitosan coating improved the vectorization of the vaccine by the mucosal route.


Assuntos
Aflatoxina B1/imunologia , Bacteriófagos/química , Quitosana/análogos & derivados , Nanopartículas/química , Vacinas/química , Animais , Bacteriófagos/imunologia , Feminino , Camundongos , Biblioteca de Peptídeos , Vacinas/imunologia
20.
Acta Biomater ; 64: 313-322, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28986300

RESUMO

Polylactide (PLA) polymers containing five distinct lengths of fluorinated (from C3F7 to C13F27) and non-fluorinated (C6H13) end-groups were successfully synthesized by ring-opening polymerization of d,l-lactide. Fluorination was expected to increase the encapsulation efficiency of perfluorohexane (PFH). 150 nm nanocapsules were obtained and 19F nuclear magnetic resonance revealed that nanocapsules formulated with fluorinated polymers increased by 2-fold the encapsulation efficiency of PFH compared with non-fluorinated derivatives, without any effect of fluorine chain length. Fluorination of the polymers did not induce any specific in vitro cytotoxicity of nanocapsules towards HUVEC and J774.A1 cell lines. The echogenicity of fluorinated-shelled nanocapsules was increased by 3-fold to 40-fold compared to non-fluorinated nanocapsules or nanoparticles devoid of a perfluorohexane core for both conventional and contrast-specific ultrasound imaging modalities. In particular, an enhanced echogenicity and contrast-specific response was observed as the fluorinated chain-length increased, probably due to an increase of density and promotion of bubble nucleation. When submitted to focused ultrasound, both intact and exploded nanocapsules could be observed, also with end-group dependency, indicating that PFH was partly vaporized. These results pave the way to the design of theranostic perfluorohexane nanocapsules co-encapsulating a drug for precision delivery using focused ultrasound. STATEMENT OF SIGNIFICANCE: We have synthesized novel fluorinated polyesters and formulated them into nanocapsules of perfluorohexane as ultrasound contrast agents. This nanosystem has been thoroughly characterized by several techniques and we show that fluorination of the biodegradable polymer favors the encapsulation of perfluorohexane without producing further reduction of cell viability. Contrary to nanocapsules of perfluoroctyl bromide formulated with the fluorinated polymers [32], the presence of the fluorinated moieties leads to an increase of echogenicity that is dependent of the length of the fluorinated moiety. Morevover, the ability of nanocapsules to explode when submitted to focused ultrasound also depends on the length of the fluorinated chain. These results pave the way to theranostic perfluorohexane nanocapsules co-encapsulating a drug for precision delivery using focused ultrasound.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos/métodos , Fluorocarbonos , Nanocápsulas/química , Poliésteres , Ondas Ultrassônicas , Ultrassonografia , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Teste de Materiais , Camundongos , Poliésteres/química , Poliésteres/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...