Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 115: 129-38, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26079987

RESUMO

Environmental isolates belonging to the genus Acidovorax play a crucial role in degrading a wide range of pollutants. Studies on Acidovorax are currently limited for many species due to the lack of genetic tools. Here, we described the use of the replicon from a small, cryptic plasmid indigenous to Acidovorx temperans strain CB2, to generate stably maintained shuttle vectors. In addition, we have developed a scarless gene knockout technique, as well as establishing green fluorescent protein (GFP) reporter and complementation systems. Taken collectively, these tools will improve genetic manipulations in the genus Acidovorax.


Assuntos
Comamonadaceae/genética , Técnicas Genéticas , Comamonadaceae/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Replicon
3.
Mol Ecol ; 10(9): 2215-23, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11555263

RESUMO

The genus Cephalorhynchus (Gray 1846) consists of four species of small coastal dolphins distributed in cool temperate waters around the Southern Hemisphere. Each species is sympatric with other members of the subfamily Lissodelphininae but widely separated from other congeners. To describe the origin and radiation of these species, we examined 442 bp of mitochondrial DNA control region sequences of 307 individuals from the genus Cephalorhynchus and compared these to sequences from other members of the subfamily Lissodelphininae. We investigate the hypotheses that Cephalorhynchus is a monophyletic genus or, alternatively, that the four species have arisen separately from pelagic Lissodelphine species and have converged morphologically. Our results support the monophyly of Cephalorhynchus within the Lissodelphininae and a pattern of radiation by colonization. We confirm a pattern of shallow but diagnosable species clades with Heaviside's dolphin as the basal branch. We further examine the monophyly of maternal haplotypes represented by our large population sample for each species. Based on this phylogeographic pattern, we propose that Cephalorhynchus originated in the waters of South Africa and, following the West Wind Drift, colonized New Zealand and then South America. The Chilean and Commerson's dolphins then speciated along the two coasts of South America, during the glaciation of Tierra del Fuego. Secondary radiations resulted in genetically isolated populations for both the Kerguelen Island Commerson's dolphin and the North Island Hector's dolphin. Our results suggest that coastal, depth-limited odontocetes are prone to population fragmentation, isolation and occasionally long-distance movements, perhaps following periods of climatic change.


Assuntos
Golfinhos/genética , Filogenia , Animais , Sequência de Bases , DNA Mitocondrial/genética , Golfinhos/classificação , Variação Genética/genética , Dados de Sequência Molecular , Alinhamento de Sequência
4.
Proc Biol Sci ; 267(1438): 97-102, 2000 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-10670959

RESUMO

The endemic New Zealand Hector's dolphin is considered the rarest species of marine dolphin with a total abundance of less than 4000. The species is listed as vulnerable because of fisheries-related mortality due to entanglement in set nets. The vulnerability of this species is further increased by its fidelity to local natal ranges and the genetic isolation of regional populations. Here we present evidence, based on 108 contemporary samples and 55 historical samples dating back to 1870, of a significant loss of mitochondrial DNA (mtDNA) diversity in two regional populations of Hector's dolphin. The haplotype diversity (h) was calculated from sequences of a 206 bp fragment in the mtDNA control region, designed to identify 13 out of the 14 known maternal lineages. Over the last 20 years, the North Island population has been reduced from at least three lineages (h = 0.41) to a single lineage (h = 0; p < 0.05). Given its small size, reproductive isolation and reduced genetic diversity, this population is likely to become extinct. The diversity of the East Coast South Island population has declined significantly from h = 0.65 to h = 0.35 (p < 0.05). Based on trend analysis of the mtDNA diversity, we predict that the East Coast population will lose all mtDNA diversity within the next 20 years. This time-series of reduction in genetic variation provides independent evidence of the severity of population decline and habitat contraction resulting from fisheries and perhaps other human activities.


Assuntos
Golfinhos/genética , Pesqueiros , Variação Genética , Animais , DNA Mitocondrial/genética , Golfinhos/fisiologia , Genética Populacional , Haplótipos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...