Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(18): 5277-5288, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35655549

RESUMO

We report the crystal structure of a new polymorph of l-tyrosine (denoted the ß polymorph), prepared by crystallization from the gas phase following vacuum sublimation. Structure determination was carried out by combined analysis of three-dimensional electron diffraction (3D-ED) data and powder X-ray diffraction (XRD) data. Specifically, 3D-ED data were required for reliable unit cell determination and space group assignment, with structure solution carried out independently from both 3D-ED data and powder XRD data, using the direct-space strategy for structure solution implemented using a genetic algorithm. Structure refinement was carried out both from powder XRD data, using the Rietveld profile refinement technique, and from 3D-ED data. The final refined structure was validated both by periodic DFT-D calculations, which confirm that the structure corresponds to an energy minimum on the energy landscape, and by the fact that the values of isotropic 13C NMR chemical shifts calculated for the crystal structure using DFT-D methodology are in good agreement with the experimental high-resolution solid-state 13C NMR spectrum. Based on DFT-D calculations using the PBE0-MBD method, the ß polymorph is meta-stable with respect to the previously reported crystal structure of l-tyrosine (now denoted the α polymorph). Crystal structure prediction calculations using the AIRSS approach suggest that there are three other plausible crystalline polymorphs of l-tyrosine, with higher energy than the α and ß polymorphs.

2.
J Am Chem Soc ; 131(37): 13508-15, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19754191

RESUMO

We have determined the crystal structure of ammonia monohydrate phase II (AMH II) employing a combination of ab initio computational structure prediction and structure solution from neutron powder diffraction data using direct space methods. Neutron powder diffraction data were collected from perdeuterated AMH II using the D2B high-resolution diffractometer at the Institut Laue-Langevin. AMH II crystallizes in space-group Pbca with 16 formula units in a unit-cell of dimensions a = 18.8285(4) A, b = 6.9415(2) A, c = 6.8449(2) A, and V = 894.61(3) A3 [rho(calc)(deuterated) = 1187.56(4) kg m(-3)] at 502 MPa, 180 K. The structure is characterized by sheets of tessellated pentagons formed by orientationally ordered O-D...O, O-D...N, and N-D...O hydrogen-bonds; these sheets are stacked along the a-axis and connected by N-D...O hydrogen bonds alone. With the exception of the simple body-centered-cubic high-pressure phases of ammonia monohydrate and ammonia dihydrate, this is the first complex molecular structure of any of the high-pressure stoichiometric ammonia hydrates to be determined. The powder structure solution is complemented by an ab initio structure prediction using density functional theory which gives an almost identical hydrogen bonding network.

3.
J Chem Phys ; 131(15): 154503, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20568868

RESUMO

We describe the results of a neutron powder diffraction study of perdeuterated ammonia monohydrate (AMH, ND(3).D(2)O) carried out in the range 102

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...