Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 4(6): e10364, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537550

RESUMO

Low bone strength in overweight individuals is a significant medical problem. One important determinant of mesenchymal stem cell fate into osteoblasts or adipocytes is the Wnt signaling pathway. We recently showed that Dickkopf-1 (DKK1), a potent Wnt inhibitor, is upregulated in obese mice. In this study, we investigated the role of DKK1 in the pathogenesis of obesity-induced bone loss using global and tissue-specific KO mice. Obesity was induced in 8-week-old male mice with an inducible global (Rosa26-CreERT2) or osteoprogenitor- (Osx-Cre-) specific deletion of Dkk1 with a high-fat diet (HFD) containing 60% fat. After 12 weeks, body weight, bone volume, bone fat mass, and bone turnover were assessed. Dkk1 fl/fl ;Rosa26-CreERT2 mice experienced a similar increase in body weight and white fat pads as control mice. A HFD significantly reduced trabecular bone mass and the bone formation rate in Cre- mice and Dkk1 fl/fl ;Rosa26-CreERT2 mice. Interestingly, Dkk1 fl/fl ;Rosa26-CreERT2 mice were protected from HFD-induced cortical bone loss. Furthermore, a HFD was associated with increased bone marrow fat in the femur, which was less pronounced in Dkk1 fl/fl ;Rosa26-CreERT2 mice. Mice with an osteoprogenitor-specific Dkk1 deletion showed similar results as the global knockout, showing a protection against HFD-induced cortical bone loss and an accumulation of bone marrow fat, but a similar decrease in trabecular bone volume. In summary, DKK1 appears to contribute distinctly to cortical, but not trabecular bone loss in obesity. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

2.
Endocr Connect ; 8(3): R55-R70, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30772871

RESUMO

The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the well-known complications of T2DM on the cardiovascular system, the eyes, kidneys and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM have a 40-70% increased risk for fractures, despite having a normal to increased bone mineral density, suggesting that other factors besides bone quantity must account for increased bone fragility. This review summarizes the current knowledge on the complex effects of T2DM on bone including effects on bone cells, bone material properties and other endocrine systems that subsequently affect bone, discusses the effects of T2DM medications on bone and concludes with a model identifying factors that may contribute to poor bone quality and increased bone fragility in T2DM.

3.
Biomater Res ; 23: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890268

RESUMO

BACKGROUND: Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. METHODS: We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student's t-test or two-way ANOVA. RESULTS: We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. CONCLUSION: In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies.

4.
Front Cell Dev Biol ; 6: 127, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333974

RESUMO

Healthy bone remodeling results from a balanced bone formation and bone resorption realized by bone-forming osteoblasts and bone-resorbing osteoclasts, respectively. Recently, Thy-1 (CD90) was identified as positive regulator of osteoblast differentiation and activation, thus, promoting bone formation while concurrently inhibiting adipogenesis and obesity in mice. Additionally, Thy-1 did not affect bone resorption. An obesity-related co-morbidity that is increasing in prevalence is a disturbed bone formation resulting in an increased fracture risk. The underlying mechanisms of obesity-induced bone alterations are not yet fully elucidated and therefore therapy options for efficient bone-anabolic treatments are limited. Therefore, we investigated the impact of Thy-1 on bone metabolism under obese conditions. Indeed, high fat diet (HFD) induced obese mice lacking Thy-1 (Thy-1-/-) showed increased body fat mass compared to wildtype (WT) mice while bone mass (-38%) and formation (-57%) were decreased as shown by micro-computed tomography (µCT) measurement, histological analysis, and fourier-transform infrared spectroscopy (FTIR). Interestingly, under obese conditions, lack of Thy-1 affected both osteoblast and osteoclast function. Number (-30%) and activity of osteoblasts were decreased in obese Thy-1-/- mice while osteoclast number (+39%) and activity were increased. Facilitated bone marrow fat accumulation (+56%) in obese Thy-1-/- mice compared to obese WT mice was associated with upregulated tumor necrosis factor α (Tnfα, +46%) and colony stimulating factor 1 receptor (Csf1r) expression, strong promoters of osteoclast differentiation. Moreover, lack of Thy-1 was accompanied by a reduction of osteoprotegerin (Tnfrsf11b) expression (-36%), an inhibitor of osteoclast differentiation. Altered Tnfα, Csf1r, and Tnfrsf11b expression might be responsible for elevated osteoclast activity in obese Thy-1-deficient mice. In summary, our findings show that lack of Thy-1 promotes obesity under HFD conditions while concurrently decreasing bone mass and formation. Mechanistic studies revealed that under obese conditions lack of Thy-1 impairs both bone formation and bone resorption.

5.
Sci Transl Med ; 10(453)2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089635

RESUMO

Osteoporosis and obesity result from disturbed osteogenic and adipogenic differentiation and present emerging challenges for our aging society. Because of the regulatory role of Thy-1 in mesenchyme-derived fibroblasts, we investigated the impact of Thy-1 expression on mesenchymal stem cell (MSC) fate between osteogenic and adipogenic differentiation and consequences for bone formation and adipose tissue development in vivo. MSCs from Thy-1-deficient mice have decreased osteoblast differentiation and increased adipogenic differentiation compared to MSCs from wild-type mice. Consistently, Thy-1-deficient mice exhibited decreased bone volume and bone formation rate with elevated cortical porosity, resulting in lower bone strength. In parallel, body weight, subcutaneous/epigonadal fat mass, and bone fat volume were increased. Thy-1 deficiency was accompanied by reduced expression of specific Wnt ligands with simultaneous increase of the Wnt inhibitors sclerostin and dickkopf-1 and an altered responsiveness to Wnt. We demonstrated that disturbed bone remodeling in osteoporosis and dysregulated adipose tissue accumulation in patients with obesity were mirrored by reduced serum Thy-1 concentrations. Our findings provide new insights into the mutual regulation of bone formation and obesity and open new perspectives to monitor and to interfere with the dysregulated balance of adipogenesis and osteogenesis in obesity and osteoporosis.


Assuntos
Obesidade/prevenção & controle , Osteogênese/efeitos dos fármacos , Antígenos Thy-1/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adiposidade , Animais , Diferenciação Celular , Regulação para Baixo , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/complicações , Tamanho do Órgão , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoporose/sangue , Osteoporose/complicações , Osteoporose/patologia , Antígenos Thy-1/sangue , Antígenos Thy-1/deficiência , Fator de Necrose Tumoral alfa/metabolismo , Via de Sinalização Wnt
6.
Bone ; 116: 120-134, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036679

RESUMO

Bone microarchitecture and strength are impaired by obesity and physical inactivity, but the underlying molecular regulation of bone metabolism in response to these factors is not well understood. Therefore, we analyzed bone and energy metabolism in male mice fed a high-fat or standard chow diet for 12 weeks with or without free access to running wheels. High-fat diet (HFD) mimicked the human condition of obesity and insulin resistance, including symptoms such as elevated serum glucose and insulin levels and reduced insulin-stimulated glucose uptake into muscle and adipose tissue. Interestingly, HFD also decreased (-44%) glucose uptake into bone marrow. Bone mass was reduced (-45%) by HFD due to a diminished (-45%) bone remodeling rate. Bone matrix quality aspects, such as biomechanical stability, were additionally decreased. Concurrently, the bone marrow adiposity increased (+63%) in response to a HFD. Further, we detected elevated expression of the Wnt signaling inhibitor dickkopf-1 (Dkk-1, +42%) in mice fed a HFD, but this was not reflected in serum samples obtained from obese humans. In mice, exercise attenuated the adverse effects of HFD by reversing the glucose uptake into bone marrow, improving the bone mass and bone matrix quality while decreasing the bone marrow adiposity. This data shows that exercise prevents some, but not all of the negative effects of HFD on bone health and suggests that insulin signaling in bone marrow and Dkk-1 signaling may be involved in the pathogenesis of bone loss induced by HFD.


Assuntos
Osso e Ossos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Condicionamento Físico Animal , Adiposidade , Adulto , Animais , Medula Óssea/metabolismo , Matriz Óssea/patologia , Osso e Ossos/patologia , Contagem de Células , Feminino , Glucose/metabolismo , Humanos , Hiperinsulinismo/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Tamanho do Órgão , Osteoclastos/patologia , Osteogênese , Via de Sinalização Wnt
7.
J Mol Endocrinol ; 61(1): R75-R90, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29588427

RESUMO

Glucocorticoid hormones (GCs) have profound effects on bone metabolism. Via their nuclear hormone receptor - the GR - they act locally within bone cells and modulate their proliferation, differentiation, and cell death. Consequently, high glucocorticoid levels - as present during steroid therapy or stress - impair bone growth and integrity, leading to retarded growth and glucocorticoid-induced osteoporosis, respectively. Because of their profound impact on the immune system and bone cell differentiation, GCs also affect bone regeneration and fracture healing. The use of conditional-mutant mouse strains in recent research provided insights into the cell-type-specific actions of the GR. However, despite recent advances in system biology approaches addressing GR genomics in general, little is still known about the molecular mechanisms of GCs and GR in bone cells. Here, we review the most recent findings on the molecular mechanisms of the GR in general and the known cell-type-specific actions of the GR in mesenchymal cells and their derivatives as well as in osteoclasts during bone homeostasis, GC excess, bone regeneration and fracture healing.


Assuntos
Glucocorticoides/metabolismo , Animais , Regeneração Óssea/fisiologia , Consolidação da Fratura/fisiologia , Humanos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Receptores de Glucocorticoides/metabolismo , Esqueleto/metabolismo
8.
Biomaterials ; 96: 11-23, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27131598

RESUMO

Bone fractures in patients with diabetes mellitus heal poorly and require innovative therapies to support bone regeneration. Here, we assessed whether sulfated hyaluronan included in collagen-based scaffold coatings can improve fracture healing in diabetic rats. Macroporous thermopolymerized lactide-based scaffolds were coated with collagen including non-sulfated or sulfated hyaluronan (HA/sHA3) and inserted into 3 mm femoral defects of non-diabetic and diabetic ZDF rats. After 12 weeks, scaffolds coated with collagen/HA or collagen/sHA3 accelerated bone defect regeneration in diabetic, but not in non-diabetic rats as compared to their non-coated controls. At the tissue level, collagen/sHA3 promoted bone mineralization and decreased the amount of non-mineralized bone matrix. Moreover, collagen/sHA3-coated scaffolds from diabetic rats bound more sclerostin in vivo than the respective controls. Binding assays confirmed a high binding affinity of sHA3 to sclerostin. In vitro, sHA3 induced BMP-2 and lowered the RANKL/OPG expression ratio, regardless of the glucose concentration in osteoblastic cells. Both sHA3 and high glucose concentrations decreased the differentiation of osteoclastic cells. In summary, scaffolds coated with collagen/sHA3 represent a potentially suitable biomaterial to improve bone defect regeneration in diabetic conditions. The underlying mechanism involves improved osteoblast function and binding sclerostin, a potent inhibitor of Wnt signaling and osteoblast function.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Regeneração Óssea/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Ácido Hialurônico/farmacologia , Osteoblastos/metabolismo , Sulfatos/farmacologia , Animais , Remodelação Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno/farmacologia , Diabetes Mellitus Tipo 2/patologia , Dioxanos/química , Marcadores Genéticos , Glucose/farmacologia , Glicosaminoglicanos/farmacologia , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Polimerização , Ligação Proteica/efeitos dos fármacos , Células RAW 264.7 , Ratos , Temperatura , Alicerces Teciduais/química
9.
Biomaterials ; 67: 335-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26232882

RESUMO

In order to improve bone defect regeneration, the development of new adaptive biomaterials and their functional and biological validation is warranted. Glycosaminoglycans (GAGs) are important extracellular matrix (ECM) components in bone and may display osteogenic properties that are potentially useful for biomaterial coatings. Using hyaluronan (HA), chondroitin sulfate (CS) and chemically modified highly sulfated HA and CS derivatives (sHA3 and sCS3; degree of sulfation ∼3), we evaluated how GAG sulfation modulates Wnt signaling, a major regulator of osteoblast, osteoclast and osteocyte biology. GAGs were tested for their capability to bind to sclerostin, an inhibitor of Wnt signaling, using surface plasmon resonance and molecular modeling to characterize their interactions. GAGs bound sclerostin in a concentration- and sulfate-dependent manner at a common binding region. These findings were confirmed in an LRP5/sclerostin interaction study and an in vitro model of Wnt activation. Here, pre-incubation of sclerostin with different GAGs led to a sulfate- and dose-dependent loss of its bioactivity. Using GAG-biotin derivatives in a competitive ELISA approach sclerostin was shown to be the preferred binding partner over Wnt3a. In conclusion, highly sulfated GAGs might control bone homeostasis via interference with sclerostin/LRP5/6 complex formation. Whether these properties can be utilized to improve bone regeneration needs to be validated in vivo.


Assuntos
Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Marcadores Genéticos , Humanos , Ácido Hialurônico/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos , Transdução de Sinais , Sulfatos/metabolismo , Sus scrofa , Termodinâmica , Proteínas Wnt/genética
10.
Endocrinology ; 155(4): 1197-206, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24467747

RESUMO

Type 2 diabetes mellitus (T2DM) is associated with increased skeletal fragility and impaired fracture healing. Intermittent PTH therapy increases bone strength; however, its skeletal and metabolic effects in diabetes are unclear. We assessed whether PTH improves skeletal and metabolic function in rats with T2DM. Subcritical femoral defects were created in diabetic fa/fa and nondiabetic +/+ Zucker Diabetic Fatty (ZDF) rats and internally stabilized. Vehicle or 75 µg/kg/d PTH(1-84) was sc administered over 12 weeks. Skeletal effects were evaluated by µCT, biomechanical testing, histomorphometry, and biochemical markers, and defect regeneration was analyzed by µCT. Glucose homeostasis was assessed using glucose tolerance testing and pancreas histology. In diabetic rats, bone mass was significantly lower in the distal femur and vertebrae, respectively, and increased after PTH treatment by up to 23% in nondiabetic and up to 18% in diabetic rats (P < .0001). Diabetic rats showed 23% lower ultimate strength at the spine (P < .0005), which was increased by PTH by 36% in normal and by 16% in diabetic rats (P < .05). PTH increased the bone formation rate by 3-fold in normal and by 2-fold in diabetic rats and improved defect regeneration in normal and diabetic rats (P < .01). PTH did not affect serum levels of undercarboxylated osteocalcin, glucose tolerance, and islet morphology. PTH partially reversed the adverse skeletal effects of T2DM on bone mass, bone strength, and bone defect repair in rats but did not affect energy metabolism. The positive skeletal effects were generally more pronounced in normal compared with diabetic rats.


Assuntos
Densidade Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Hormônio Paratireóideo/uso terapêutico , Animais , Fenômenos Biomecânicos , Peso Corporal , Osso e Ossos/patologia , Osso e Ossos/ultraestrutura , Complicações do Diabetes/tratamento farmacológico , Modelos Animais de Doenças , Fêmur/efeitos dos fármacos , Fêmur/patologia , Consolidação da Fratura/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Homeostase , Masculino , Pâncreas/patologia , Hormônio Paratireóideo/metabolismo , Ratos , Ratos Zucker , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...