Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(32): e2301689120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523564

RESUMO

The diversity of COVID-19 disease in otherwise healthy people, from seemingly asymptomatic infection to severe life-threatening disease, is not clearly understood. We passaged a naturally occurring near-ancestral SARS-CoV-2 variant, capable of infecting wild-type mice, and identified viral genomic mutations coinciding with the acquisition of severe disease in young adult mice and lethality in aged animals. Transcriptomic analysis of lung tissues from mice with severe disease elucidated a host antiviral response dominated mainly by interferon and IL-6 pathway activation in young mice, while in aged animals, a fatal outcome was dominated by TNF and TGF-ß signaling. Congruent with our pathway analysis, we showed that young TNF-deficient mice had mild disease compared to controls and aged TNF-deficient animals were more likely to survive infection. Emerging clinical correlates of disease are consistent with our preclinical studies, and our model may provide value in defining aberrant host responses that are causative of severe COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto Jovem , Humanos , Camundongos , Animais , Idoso , SARS-CoV-2/genética , COVID-19/genética , Virulência/genética , Mutação , Modelos Animais de Doenças
2.
Biomed Pharmacother ; 158: 114211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36916437

RESUMO

Methylglyoxal (MGO) is a reactive glucose metabolite linked to diabetic cardiovascular disease (CVD). MGO levels surge during intermittent hyperglycemia. We hypothesize that these MGO spikes contribute to atherosclerosis, and that pyridoxamine as a MGO quencher prevents this injury. To study this, we intravenously injected normoglycemic 8-week old male C57Bl6 ApoE-/- mice with normal saline (NS, n = 10) or 25 µg MGO for 10 consecutive weeks (MGOiv, n = 11) with or without 1 g/L pyridoxamine (MGOiv+PD, n = 11) in the drinking water. We measured circulating immune cells by flow cytometry. We quantified aortic arch lesion area in aortic roots after Sudan-black staining. We quantified the expression of inflammatory genes in the aorta by qPCR. Intermittent MGO spikes weekly increased atherosclerotic burden in the arch 1.8-fold (NS: 0.9 ± 0.1 vs 1.6 ± 0.2 %), and this was prevented by pyridoxamine (0.8 ± 0.1 %). MGOiv spikes increased circulating neutrophils and monocytes (2-fold relative to NS) and the expression of ICAM (3-fold), RAGE (5-fold), S100A9 (2-fold) and MCP1 (2-fold). All these changes were attenuated by pyridoxamine. This study suggests that MGO spikes damages the vasculature independently of plasma glucose levels. Pyridoxamine and potentially other approaches to reduce MGO may prevent excess cardiovascular risk in diabetes.


Assuntos
Aorta Torácica , Aterosclerose , Camundongos , Masculino , Animais , Aorta Torácica/metabolismo , Piridoxamina/farmacologia , Aldeído Pirúvico/metabolismo , Óxido de Magnésio , Aterosclerose/prevenção & controle , Apolipoproteínas E
3.
Antioxidants (Basel) ; 11(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35624851

RESUMO

Circulating levels of soluble ACE2 are increased by diabetes. Although this increase is associated with the presence and severity of cardiovascular disease, the specific role of soluble ACE2 in atherogenesis is unclear. Previous studies suggested that, like circulating ACE, soluble ACE2 plays a limited role in vascular homeostasis. To challenge this hypothesis, we aimed to selectively increase circulating ACE2 and measure its effects on angiotensin II dependent atherogenesis. Firstly, in Ace2/ApoE DKO mice, restoration of circulating ACE2 with recombinant murine soluble (rmACE219-613; 1 mg/kg/alternate day IP) reduced plaque accumulation in the aortic arch, suggesting that the phenotype may be driven as much by loss of soluble ACE2 as the reduction in local ACE2. Secondly, in diabetic ApoE KO mice, where activation of the renin angiotensin system drives accelerated atherosclerosis, rmACE219-613 also reduced plaque accumulation in the aorta after 6 weeks. Thirdly, to ensure consistent long-term delivery of soluble ACE2, an intramuscular injection was used to deliver a DNA minicircle encoding ACE219-613. This strategy efficiently increased circulating soluble ACE2 and reduced atherogenesis and albuminuria in diabetic ApoE KO mice followed for 10 weeks. We propose that soluble ACE2 has independent vasculoprotective effects. Future strategies that increase soluble ACE2 may reduce accelerated atherosclerosis in diabetes and other states in which the renin angiotensin system is upregulated.

4.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893175

RESUMO

Neutralizing antibodies are important for immunity against SARS-CoV-2 and as therapeutics for the prevention and treatment of COVID-19. Here, we identified high-affinity nanobodies from alpacas immunized with coronavirus spike and receptor-binding domains (RBD) that disrupted RBD engagement with the human receptor angiotensin-converting enzyme 2 (ACE2) and potently neutralized SARS-CoV-2. Epitope mapping, X-ray crystallography, and cryo-electron microscopy revealed two distinct antigenic sites and showed two neutralizing nanobodies from different epitope classes bound simultaneously to the spike trimer. Nanobody-Fc fusions of the four most potent nanobodies blocked ACE2 engagement with RBD variants present in human populations and potently neutralized both wild-type SARS-CoV-2 and the N501Y D614G variant at concentrations as low as 0.1 nM. Prophylactic administration of either single nanobody-Fc or as mixtures reduced viral loads by up to 104-fold in mice infected with the N501Y D614G SARS-CoV-2 virus. These results suggest a role for nanobody-Fc fusions as prophylactic agents against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2/imunologia , Anticorpos de Domínio Único , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , COVID-19/imunologia , Camelídeos Americanos , Humanos , Camundongos , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia
5.
Antioxidants (Basel) ; 10(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503818

RESUMO

Cardiovascular diseases (CVD), which include a number of cardiac and vascular conditions, resulted in approximately 17 [...].

6.
Circ Res ; 127(7): 877-892, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564710

RESUMO

RATIONALE: Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE: To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS: To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS: Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/etiologia , Glicemia/metabolismo , Hiperglicemia/complicações , Monócitos/metabolismo , Mielopoese , Neutrófilos/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Hiperglicemia/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Monócitos/patologia , Neutrófilos/patologia , Placa Aterosclerótica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
7.
J Clin Invest ; 129(1): 406-421, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530993

RESUMO

Activation of the type 1 angiotensin II receptor (AT1) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT1 receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT1 receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-κB-driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT1 receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT1 receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE362-404 was able to inhibit transactivation of RAGE and attenuate Ang II-dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE362-404 restored Ang II-dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation.


Assuntos
Aterosclerose/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Ativação Transcricional , Animais , Aterosclerose/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout para ApoE , Domínios Proteicos , Receptor Tipo 1 de Angiotensina/genética
8.
Free Radic Res ; 52(10): 1140-1157, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30422019

RESUMO

Inflammation is a protective immune response against invading pathogens, however, dysregulated inflammation is detrimental. As the complex inflammatory response involves multiple mediators, including the involvement of reactive oxygen species, concomitantly targeting proinflammatory and antioxidant check-points may be a more rational strategy. We report the synthesis and anti-inflammatory/antioxidant activity of a novel indanedione derivative DMFO. DMFO scavenged reactive oxygen species (ROS) in in-vitro radical scavenging assays and in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. In acute models of inflammation (carrageenan-induced inflammation in rat paw and air pouch), DMFO effectively reduced paw oedema and leucocyte infiltration with an activity comparable to diclofenac. DMFO stabilised mast cells (MCs) in in-vitro A23187 and compound 48/80-induced assays. Additionally, DMFO stabilised MCs in an antigen (ovalbumin)-induced MC degranulation model in-vivo, without affecting serum IgE levels. In a model of chronic immune-mediated inflammation, Freund's adjuvant-induced arthritis, DMFO reduced arthritic score and contralateral paw oedema, and increased the pain threshold with an efficacy comparable to diclofenac but without being ulcerogenic. Additionally, DMFO significantly reduced serum TNFα levels. Mechanistic studies revealed that DMFO reduced proinflammatory genes (IL1ß, TNFα, IL6) and protein levels (COX2, MCP1), with a concurrent increase in antioxidant genes (NQO1, haem oxygenase 1 (HO-1), Glo1, Nrf2) and protein (HO-1) in LPS-stimulated macrophages. Importantly, the anti-inflammatory/antioxidant effect on gene expression was absent in primary macrophages isolated from Nrf2 KO mice suggesting an Nrf2-targeted activity, which was subsequently confirmed using siRNA transfection studies in RAW macrophages. Therefore, DMFO is a novel, orally-active, safe (even at 2 g/kg p.o.), a small molecule which targets Nrf2 in ameliorating inflammation.


Assuntos
Antioxidantes/metabolismo , Indanos/farmacologia , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Benzotiazóis/antagonistas & inibidores , Benzotiazóis/metabolismo , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Carragenina , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Edema/induzido quimicamente , Edema/tratamento farmacológico , Indanos/síntese química , Indanos/química , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Mastócitos , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/metabolismo , Picratos/antagonistas & inibidores , Picratos/metabolismo , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Ácidos Sulfônicos/antagonistas & inibidores , Ácidos Sulfônicos/metabolismo
9.
Diabetes ; 67(12): 2657-2667, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213823

RESUMO

Increasing evidence points to the fact that defects in the resolution of inflammatory pathways predisposes individuals to the development of chronic inflammatory diseases, including diabetic complications such as accelerated atherosclerosis. The resolution of inflammation is dynamically regulated by the production of endogenous modulators of inflammation, including lipoxin A4 (LXA4). Here, we explored the therapeutic potential of LXA4 and a synthetic LX analog (Benzo-LXA4) to modulate diabetic complications in the streptozotocin-induced diabetic ApoE-/- mouse and in human carotid plaque tissue ex vivo. The development of diabetes-induced aortic plaques and inflammatory responses of aortic tissue, including the expression of vcam-1, mcp-1, il-6, and il-1ß, was significantly attenuated by both LXA4 and Benzo-LXA4 in diabetic ApoE-/- mice. Importantly, in mice with established atherosclerosis, treatment with LXs for a 6-week period, initiated 10 weeks after diabetes onset, led to a significant reduction in aortic arch plaque development (19.22 ± 2.01% [diabetic]; 12.67 ± 1.68% [diabetic + LXA4]; 13.19 ± 1.97% [diabetic + Benzo-LXA4]). Secretome profiling of human carotid plaque explants treated with LXs indicated changes to proinflammatory cytokine release, including tumor necrosis factor-α and interleukin-1ß. LXs also inhibited platelet-derived growth factor-stimulated vascular smooth muscle cell proliferation and transmigration and endothelial cell inflammation. These data suggest that LXs may have therapeutic potential in the context of diabetes-associated vascular complications.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aorta/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipoxinas/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aterosclerose/etiologia , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Humanos , Inflamação/etiologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoxinas/farmacologia , Camundongos , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
J Am Heart Assoc ; 7(13)2018 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-29960985

RESUMO

BACKGROUND: 8-Oxo-2'-deoxyguanosine (8-oxo-2'-dG) is a biomarker of oxidative DNA damage that is associated with cardiovascular disease and premature mortality in the general population. Although oxidative stress has a proven role in cardiovascular complications in diabetes mellitus, evidence for a relationship between plasma 8-oxo-2'-dG and major cardiovascular outcomes in diabetes mellitus is weak. METHODS AND RESULTS: A case-cohort study was performed in 3766 participants with prevalent diabetes mellitus in the ADVANCE (Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation) trial (ClinicalTrials.gov number NCT00145925). The hazard ratios for mortality and major acute cardiovascular events were derived using Cox regression models. During a median of 5 years of follow-up, 695 (18.4%) participants in this enriched cohort died (including 354 deaths from cardiovascular disease). Individuals with higher levels of 8-oxo-2'-dG were more likely to die. After adjusting for cardiovascular disease risk factors, the hazard ratio for a 1-SD increase in plasma 8-oxo-2'-dG was 1.10 (95% confidence interval, 1.01-1.20; P=0.03). This was driven by an independent association between plasma 8-oxo-2'-dG and cardiovascular death (hazard ratio, 1.23; 95% confidence interval, 1.10-1.37 [P<0.001]). By contrast, no association was seen between 8-oxo-2'-dG and noncardiovascular disease death (of which cancer was the major single cause). 8-Oxo-2'-dG was also not significantly associated with either nonfatal myocardial infarction or nonfatal stroke. CONCLUSIONS: In adults with type 2 diabetes mellitus, increased levels of 8-oxo-2'-dG are independently associated with all-cause mortality and cardiovascular mortality in adults with longstanding type 2 diabetes mellitus who participated in the ADVANCE trial, consistent with the role of oxidative damage in the development and progression of cardiovascular decompensation in diabetes mellitus. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00145925.


Assuntos
Doenças Cardiovasculares/sangue , Dano ao DNA , Desoxiguanosina/análogos & derivados , Diabetes Mellitus Tipo 2/sangue , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Idoso , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Causas de Morte , Desoxiguanosina/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Fatores de Risco , Fatores de Tempo , Regulação para Cima
11.
Clin Transl Immunology ; 7(4): e1016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713471

RESUMO

Diabetes is considered a major burden on the healthcare system of Western and non-Western societies with the disease reaching epidemic proportions globally. Diabetic patients are highly susceptible to developing micro- and macrovascular complications, which contribute significantly to morbidity and mortality rates. Over the past decade, a plethora of research has demonstrated that oxidative stress and inflammation are intricately linked and significant drivers of these diabetic complications. Thus, the focus now has been towards specific mechanism-based strategies that can target both oxidative stress and inflammatory pathways to improve the outcome of disease burden. This review will focus on the mechanisms that drive these diabetic complications and the feasibility of emerging new therapies to combat oxidative stress and inflammation in the diabetic milieu.

12.
J Am Soc Nephrol ; 29(5): 1437-1448, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29490938

RESUMO

Background The failure of spontaneous resolution underlies chronic inflammatory conditions, including microvascular complications of diabetes such as diabetic kidney disease. The identification of endogenously generated molecules that promote the physiologic resolution of inflammation suggests that these bioactions may have therapeutic potential in the context of chronic inflammation. Lipoxins (LXs) are lipid mediators that promote the resolution of inflammation.Methods We investigated the potential of LXA4 and a synthetic LX analog (Benzo-LXA4) as therapeutics in a murine model of diabetic kidney disease, ApoE-/- mice treated with streptozotocin.Results Intraperitoneal injection of LXs attenuated the development of diabetes-induced albuminuria, mesangial expansion, and collagen deposition. Notably, LXs administered 10 weeks after disease onset also attenuated established kidney disease, with evidence of preserved kidney function. Kidney transcriptome profiling defined a diabetic signature (725 genes; false discovery rate P≤0.05). Comparison of this murine gene signature with that of human diabetic kidney disease identified shared renal proinflammatory/profibrotic signals (TNF-α, IL-1ß, NF-κB). In diabetic mice, we identified 20 and 51 transcripts regulated by LXA4 and Benzo-LXA4, respectively, and pathway analysis identified established (TGF-ß1, PDGF, TNF-α, NF-κB) and novel (early growth response-1 [EGR-1]) networks activated in diabetes and regulated by LXs. In cultured human renal epithelial cells, treatment with LXs attenuated TNF-α-driven Egr-1 activation, and Egr-1 depletion prevented cellular responses to TGF-ß1 and TNF-αConclusions These data demonstrate that LXs can reverse established diabetic complications and support a therapeutic paradigm to promote the resolution of inflammation.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Lipoxinas/uso terapêutico , Albuminúria/etiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Colágeno/metabolismo , Diabetes Mellitus Experimental , Nefropatias Diabéticas/complicações , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Mesângio Glomerular/patologia , Humanos , Injeções Intraperitoneais , Lipoxinas/farmacologia , Masculino , Camundongos Knockout para ApoE , NF-kappa B/genética , Fator de Crescimento Derivado de Plaquetas/genética , Transcriptoma , Fator de Crescimento Transformador beta1/genética , Fator de Necrose Tumoral alfa/genética
13.
Diabetes ; 67(5): 960-973, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29449307

RESUMO

Signaling via the receptor of advanced glycation end products (RAGE)-though complex and not fully elucidated in the setting of diabetes-is considered a key injurious pathway in the development of diabetic nephropathy (DN). We report here that RAGE deletion resulted in increased expression of fibrotic markers (collagen I and IV, fibronectin) and the inflammatory marker MCP-1 in primary mouse mesangial cells (MCs) and in kidney cortex. RNA sequencing analysis in MCs from RAGE-/- and wild-type mice confirmed these observations. Nevertheless, despite these gene expression changes, decreased responsiveness to transforming growth factor-ß was identified in RAGE-/- mice. Furthermore, RAGE deletion conferred a more proliferative phenotype in MCs and reduced susceptibility to staurosporine-induced apoptosis. RAGE restoration experiments in RAGE-/- MCs largely reversed these gene expression changes, resulting in reduced expression of fibrotic and inflammatory markers. This study highlights that protection against DN in RAGE knockout mice is likely to be due in part to the decreased responsiveness to growth factor stimulation and an antiapoptotic phenotype in MCs. Furthermore, it extends our understanding of the role of RAGE in the progression of DN, as RAGE seems to play a key role in modulating the sensitivity of the kidney to injurious stimuli such as prosclerotic cytokines.


Assuntos
Apoptose/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Córtex Renal/metabolismo , Células Mesangiais/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Animais , Proliferação de Células/genética , Sobrevivência Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/metabolismo , Córtex Renal/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Camundongos , Camundongos Knockout , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia
15.
Diabetes ; 66(8): 2266-2277, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487436

RESUMO

The let-7 miRNA family plays a key role in modulating inflammatory responses. Vascular smooth muscle cell (SMC) proliferation and endothelial cell (EC) dysfunction are critical in the pathogenesis of atherosclerosis, including in the setting of diabetes. Here we report that let-7 levels are decreased in diabetic human carotid plaques and in a model of diabetes-associated atherosclerosis, the diabetic ApoE-/- mouse. In vitro platelet-derived growth factor (PDGF)- and tumor necrosis factor-α (TNF-α)-induced vascular SMC and EC activation was associated with reduced let-7 miRNA expression via Lin28b, a negative regulator of let-7 biogenesis. Ectopic overexpression of let-7 in SMCs inhibited inflammatory responses including proliferation, migration, monocyte adhesion, and nuclear factor-κB activation. The therapeutic potential of restoring let-7 levels using a let-7 mimic was tested: in vitro in SMCs using an endogenous anti-inflammatory lipid (lipoxin A4), ex vivo in murine aortas, and in vivo via tail vein injection in a 24-h murine model. Furthermore, we delivered let-7 mimic to human carotid plaque ex vivo and observed significant changes to the secretome in response to let-7 therapy. Restoration of let-7 expression could provide a new target for an anti-inflammatory approach in diabetic vascular disease.


Assuntos
Aterosclerose/genética , Estenose das Carótidas/genética , Complicações do Diabetes/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Apolipoproteínas E/genética , Artérias Carótidas/citologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/genética , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/administração & dosagem , Músculo Liso Vascular/citologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas de Ligação a RNA , Fator de Necrose Tumoral alfa/metabolismo
16.
Eur J Pharmacol ; 807: 12-20, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28438648

RESUMO

Endoplasmic reticulum (ER) stress contributes to progression of diabetic nephropathy, which promotes end-stage renal failure in diabetic patients. This study was undertaken to investigate the actions of tempol and ramipril, pharmacological agents that target the consequences of NADPH oxidase, on diabetic nephropathy in a rat model of type 1 diabetes, with an emphasis on markers of ER stress. Male Sprague-Dawley rats were injected intravenously with a single bolus of streptozotocin (55mg/kg) to induce type 1 diabetes. An additional age-matched group of rats was administered with citrate vehicle as controls. After 4 weeks of untreated diabetes, rats received tempol (1.5mM/kg/day subcutaneously, n=8), ramipril (1mg/kg/day in drinking water, n=8) or remained untreated for an additional 4 weeks (n=7). After 8 weeks of diabetes in total, kidneys were collected for histological analysis, gene expression and protein abundance. Tempol and ramipril blunted diabetes-induced upregulation of NADPH oxidase isoforms (Nox4, Nox2, p47phox), accompanied by an amelioration of diabetes-induced glomerular injury (podocin, nephrin, Kim-1), tubulo-interstitial fibrosis (TGFß1, TGFß-R2, pSMAD3, α-SMA) and pro-inflammatory cytokines (TNFα, MCP-1, ANX-A1, FPR2) expression. In addition, the diabetes-induced renal ER stress, evidenced by increased expression of GRP-78 chaperone and stress-associated markers ATF4, TRB3, as well as XBP1s, phospho-p38 mitogen-activated protein kinase (MAPK) and 3-nitrotyrosination, were all attenuated by tempol and ramipril. These observations suggest that antioxidant approaches that blunt NADPH upregulation may attenuate diabetic nephropathy, at least in part by negatively regulating ER stress and inflammation, and hence ameliorating kidney damage.


Assuntos
Materiais Biomiméticos/farmacologia , Óxidos N-Cíclicos/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NADPH Oxidases/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Materiais Biomiméticos/uso terapêutico , Óxidos N-Cíclicos/uso terapêutico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Fibrose , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ramipril/farmacologia , Ratos , Ratos Sprague-Dawley , Marcadores de Spin
17.
Crit Care Med ; 45(2): e184-e194, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27749344

RESUMO

OBJECTIVES: To study the effect of a lack of antioxidant defenses during lethal pneumonia induced by Klebsiella pneumonia, compared to wild-type mice. SETTING: Laboratory experiments. SUBJECTS: C57Bl6 and glutathione peroxidase 1 knockout mice. INTERVENTION: Murine acute pneumonia model induced by Klebsiella pneumonia. MEASUREMENTS AND MAIN RESULTS: We show here that despite a lack of one of the major antioxidant defense enzymes, glutathione peroxidase 1 knockout mice are protected during lethal pneumonia induced by Klebsiella pneumonia, compared to wild-type mice. Furthermore, this protective effect was suppressed when antioxidant defenses were restored. Infected glutathione peroxidase 1 mice showed an early and significant, albeit transient, increase in the activity of the NOD-like receptor family, pyrin domain containing 3 inflammasome when compared with wild-type mice. The key role of the NOD-like receptor family, pyrin domain containing 3 inflammasome during acute pneumonia was confirmed in vivo when the protective effect was suppressed by treating glutathione peroxidase 1 mice with an interleukin-1 receptor antagonist. Additionally we report, in vitro, that increased concentrations of active caspase-1 and interleukin-1ß are related to an increased concentration of hydrogen peroxide in bacterially infected glutathione peroxidase 1 macrophages and that restoring hydrogen peroxide antioxidant defenses suppressed this effect. CONCLUSIONS: Our findings demonstrate that, contrary to current thinking, an early intervention targeting NOD-like receptor family, pyrin domain containing 3 inflammasome activity induces a timely and efficient activation of the innate immune response during acute infection. Our findings also demonstrate a role for hydrogen peroxide in the mechanisms tightly regulating NOD-like receptor family, pyrin domain containing 3 activation.


Assuntos
Peróxido de Hidrogênio/metabolismo , Inflamassomos/fisiologia , Choque Séptico/fisiopatologia , Animais , Antioxidantes/uso terapêutico , Western Blotting , Modelos Animais de Doenças , Feminino , Glutationa Peroxidase/metabolismo , Infecções por Klebsiella/fisiopatologia , Klebsiella pneumoniae , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Choque Séptico/patologia , Glutationa Peroxidase GPX1
18.
Vascul Pharmacol ; 79: 32-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26569096

RESUMO

A critical early event in the pathogenesis of atherosclerosis is vascular inflammation leading to endothelial dysfunction (ED). Reactive oxygen species and inflammation are inextricably linked and declining antioxidant defense is implicated in ED. We have previously shown that Glutathione peroxidase-1 (GPx1) is a crucial antioxidant enzyme in the protection against diabetes-associated atherosclerosis. In this study we aimed to investigate mechanisms by which lack of GPx1 affects pro-inflammatory mediators in primary aortic endothelial cells (PAECs) isolated from GPx1 knockout (GPx1 KO) mice. Herein, we demonstrate that lack of GPx1 prolonged TNF-α induced phosphorylation of P38, ERK and JNK, all of which was reversed upon treatment with the GPx1 mimetic, ebselen. In addition, Akt phosphorylation was reduced in GPx1 KO PAECs, which correlated with decreased nitric oxide (NO) bioavailability as compared to WT PAECs. Furthermore, IκB degradation was prolonged in GPx1 KO PAECS suggesting an augmentation of NF-κB activity. In addition, the expression of vascular cell adhesion molecule (VCAM-1) was significantly increased in GPx1 KO PAECs and aortas. Static and dynamic flow adhesion assays showed significantly increased adhesion of fluorescently labeled leukocytes to GPx1 KO PAECS and aortas respectively, which were significantly reduced by ebselen treatment. Our results suggest that GPx1 plays a critical role in regulating pro-inflammatory pathways, including MAPK and NF-κB, and down-stream mediators such as VCAM-1, in vascular endothelial cells. Lack of GPx1, via effects on p-AKT also affects signaling to eNOS-derived NO. We speculate based on these results that declining antioxidant defenses as seen in cardiovascular diseases, by failing to regulate these pro-inflammatory pathways, facilitates an inflammatory and activated endothelium leading to ED and atherogenesis.


Assuntos
Endotélio Vascular/metabolismo , Glutationa Peroxidase/deficiência , Mediadores da Inflamação/metabolismo , Animais , Proliferação de Células/fisiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Glutationa Peroxidase GPX1
19.
Diabetes Care ; 38(10): 1891-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26253728

RESUMO

OBJECTIVE: This study explored whether activation of the receptor for advanced glycation end products (RAGE) is implicated in the development of diabetes complications. RESEARCH DESIGN AND METHODS: A case-cohort study was performed in 3,763 participants with prevalent diabetes in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. The hazard ratios (HRs) for death, major cardiovascular events, and new or worsening nephropathy were derived using Cox regression models, and the ability of sRAGE and AGE levels to reclassify the risk of nephropathy was assessed. RESULTS: After adjustment for a range of possible confounders and other risk factors, sRAGE levels were associated with all-cause mortality (HR 1.11 for a 1-SD increase of log sRAGE [95% CI 1.00-1.22]; P = 0.045) and new or worsening nephropathy (HR 1.20 for a 1-SD increase of log sRAGE [95% CI 1.02-1.41]; P = 0.032). Circulating AGE levels were also independently associated with new or worsening nephropathy (HR 1.21 for a 1-SD increase [95% CI 1.08-1.36]; P = 0.001). Both markers also significantly improved the accuracy with which the 5-year risk of new or worsening nephropathy could be predicted (net reclassification index in continuous model, 0.25 for sRAGE and 0.24 for AGE levels). CONCLUSIONS: In adults with type 2 diabetes, increased levels of sRAGE are independently associated with new or worsening kidney disease and mortality over the next 5 years. Higher levels of AGE are also associated with an increased risk of adverse renal outcomes. The AGE/RAGE axis may be of importance in the prevention and management of diabetes complications.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Idoso , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Angiopatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/prevenção & controle , Método Duplo-Cego , Quimioterapia Combinada , Métodos Epidemiológicos , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Receptores Imunológicos , Resultado do Tratamento
20.
PLoS One ; 10(3): e0118758, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786223

RESUMO

Angiotensin converting enzyme (ACE) 2 is an important modulator of the renin angiotensin system (RAS) through its role to degrade angiotensin (Ang) II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE), which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx). Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day) for 2 weeks. STNx led to hypertension (P<0.01), kidney hypertrophy (P<0.001) and impaired kidney function (P<0.001) compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01), with reduced cortical and medullary ACE2 activity (P<0.05), and increased urinary ACE2 excretion (P<0.05) compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001), and negatively with creatinine clearance (P=0.04). In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01), increased cortical ACE2 mRNA (P<0.05) and increased cortical and medullary ACE2 activity (P<0.05). The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.


Assuntos
Diminazena/análogos & derivados , Rim/efeitos dos fármacos , Rim/enzimologia , Nefrectomia/efeitos adversos , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Diminazena/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Rim/lesões , Rim/fisiologia , Córtex Renal/efeitos dos fármacos , Córtex Renal/enzimologia , Medula Renal/efeitos dos fármacos , Medula Renal/enzimologia , Peptidil Dipeptidase A/sangue , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/urina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA